1887

Abstract

The taxonomic position of strains was examined through the results of DNA relatedness (S1 nuclease method) studies associated with the determination of Δ , 16S rRNA phylogenetic inferences and phenotypic characterization, including morphological, auxanographic, biochemical and physiological properties. Three genomic species were delineated on a consensus assessment. One of these species corresponded to , since strains were at least 50% related to the type strain of this species with Δ less than 7 °C. The two other species were novel genomic species II and III, which were less than 40% related to each other with Δ higher than 9 °C. A comparison of the complete 16S rDNA sequences of several representatives of genomic species II and genomic species III revealed that each of them formed a stable lineage independent of the cluster generated by strains. The genomic species differed in their maximum temperatures for growth. A correlation with the ecological origin of the bacterial samples was noticed. The heat-tolerant group I (maximum growth temperature 35–39 °C) corresponded to the symbionts of groups Brecon and HP88 and , nematodes living in warm and tropical countries, respectively. Group II (maximum growth temperature 33–35 °C) encompassed symbionts from and group NC1 of , nematodes isolated in temperate climates. Group III were bacteria isolated from human specimens. Two new species, sp. nov. (type strain CIP 105563 and sp. nov. (type strain ATCC 43950), are proposed for genomic species II and III, respectively. Species I and II can be separated into sub-groups on the basis of high DNA-DNA relatedness (more than 80% DNA binding with Δü < 1·5 °C), 16S rDNA branching and phenotypic characters. Therefore, we propose that the two species and should be subdivided into subspecies as follows: subsp. subsp. nov. (type strain ATCC 29999), subsp. subsp. nov. (type strain CIP 105564), subsp. subsp. nov. (type strain CIP 105565) and subsp. subsp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1645
1999-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1645.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1645&mimeType=html&fmt=ahah

References

  1. Akhurst R. J. 1982; Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065
    [Google Scholar]
  2. Akhurst R. J., Mourant R. G., Baud L., Boemare N. E. 1996; Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Entero-bacteriaceae). Int J Syst Bacteriol 46:1034–1041
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  4. Boemare N. E., Akhurst R. J. 1988; Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol 134:751–761
    [Google Scholar]
  5. Boemare N. E., Akhurst R. J., Mourant R. G. 1993; DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255
    [Google Scholar]
  6. Boemare N. E., Givaudan A., Brehélin M., Laumond C. 1997; Symbiosis and pathogenicity of nematode-bacterium complexes. Symbiosis 22:21–45
    [Google Scholar]
  7. Brenner D. J., McWhorter A. C., Knutson J. K., Steigerwalt A. G. 1982; Escherichia vulneris\ a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140
    [Google Scholar]
  8. Brunel B., Givaudan A., Lanois A., Akhurst R. J., Boemare N. 1997; Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 63:574–580
    [Google Scholar]
  9. Dix I., Burnell A. M., Griffin C. T., Joyce S. A., Nugent M. J., Downes M. J. 1992; The identification of biological species in the genus Heterorhabditis (Nematoda: Heterorhabditidae) by cross-breeding second-generation amphimictic adults. Parasitology 104:509–518
    [Google Scholar]
  10. Farmer J. J. III, Jorgensen J. H., Grimont P. A. D.8 other authors 1989; Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J Clin Microbiol 27:1594–1600
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  13. Fernandez M. P., Meugnier H., Grimont P. A. D., Bardin R. 1989; Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429
    [Google Scholar]
  14. Fischer-Le Saux M., Mauléon H., Constant P., Brunel B., Boemare N. E. 1998; PCR-ribotyping of Xenorhabdus and Photorhabdus isolates from the Caribbean region in relation to the taxonomy and geographic distribution of their nematode hosts. Appl Environ Microbiol 64:4246–4254
    [Google Scholar]
  15. Grenier E., Bonifassi E., Abad P., Laumond C. 1996; Use of species-specific satellite DNAs as diagnostic probes in the identification of Steinernematidae and Heterorhabditidae entomopathogenic nematodes. Parasitology 113:483–489
    [Google Scholar]
  16. Grimont P. A. D. 1988; Use of DNA reassociation in bacterial classification. Can J Microbiol 34:541–546
    [Google Scholar]
  17. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330
    [Google Scholar]
  18. Hominick W. M., Reid A. P., Bohan D. A., Briscoe B. R. 1996; Entomopathogenic nematodes: biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Sci Technol 6:317–331
    [Google Scholar]
  19. Khan A., Brooks W. M. 1977; A chromogenic bioluminescent bacterium associated with the entomophilic nematode Chromonema heliothidis. J Invertebr Pathol 29:253–261
    [Google Scholar]
  20. Khan A., Brooks W. M., Hirschmann H. 1976; Chromonema heliothidis n. gen., n. sp. (Steinernematidae, Nematoda), a parasite of Heliothis zea (Noctuidae, Lepidoptera), and other insects. J Nematol 8:159–168
    [Google Scholar]
  21. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  22. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32
    [Google Scholar]
  23. Liu J., Berry R., Poinar G., Moldenke A. 1997; Phylogeny of Photorhabdus and Xenorhabdus species and strains as determined by comparison of partial 16S rRNA gene sequences. Int J Syst Bacteriol 47:948–951
    [Google Scholar]
  24. Nei M. 1987 Molecular Evolutionary Genetics New York: Columbia University Press;
    [Google Scholar]
  25. Perriere G., Gouy M. 1996; WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369
    [Google Scholar]
  26. Poinar G. O. Jr 1976; Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. gen. n. sp. (Rhabditida; Heterorhabditidae n. Fam.). Nematologica 21:463–170
    [Google Scholar]
  27. Poinar G. O. Jr 1990 Taxonomy and biology of Steinernematidae and Heterorhabditidae. Entomopathogenic Nematodes in Biological Control23–61 Edited by Gaugler R., Kaya H. K. Boca Raton, FL: CRC Press;
    [Google Scholar]
  28. Poinar G. O., Thomas G. M., Hess R. 1977; Characteristics of the specific bacterium associated with Heterorhabditis bacteriophora (Heterorhabditidae: Rhabditida). Nematologica 23:97–102
    [Google Scholar]
  29. Rainey F. A., Ehlers R.-U., Stackebrandt E. 1995; Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus. Int J Syst Bacteriol 45:379–381
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  31. Sneath P. H. A. 1989; Analysis and interpretation of sequence data for bacterial systematics: the view of numerical taxonomist. Syst Appl Microbiol 12:15–31
    [Google Scholar]
  32. Szallas E., Koch C., Fodor A., Burghardt J., Buss O., Szentirmai A., Nealson K. H., Stackebrandt E. 1997; Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. Int J Syst Bacteriol 47:402–407
    [Google Scholar]
  33. Thomas G. M., Poinar G. O. Jr 1979; Xenorhabdus gen. nov., a genus of entomopathogenic nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 29:352–360
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal-x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  35. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1645
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1645
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error