1887

Abstract

Twenty-five non-identified fluorescent strains isolated from natural mineral waters were previously clustered into three phenotypic subclusters, XIIIb, XVa and XVc. These strains were characterized genotypically in the present study. DNA-DNA hybridization results and DNA base composition analysis revealed that these strains were members of two new species, for which the names sp. nov. (type strain CIP 105469) and sp. nov. (type strain CIP 105470) are proposed. included 13 strains from phenotypic subclusters XVa and XVc. included 10 strains from phenotypic subcluster XIIIb. The levels of DNA-DNA relatedness ranged from 71 to 100% for and from 74 to 100% for . The G+C content of the DNA of each type strain was 58 mol%. DNA similarity levels, measured with 67 reference strains of , were below 55%, with Δ values of 13 °C or more. The two new species presented basic morphological characteristics common to all pseudomonads. Various phenotypic features were found to differentiate them: strains utilized -arabitol, , adonitol, xylitol and as carbon sources, whereas strains assimilated -arabinose, -xylose, -saccharate, , tricarballylate, -glucuronate, -galacturonate, and histamine. The complete 16S rRNA sequences of each type strain were determined and compared with those of the type strains of species. Finally, a phylogenetic tree was inferred from sequence analysis and demonstrated that the two new species fell into the ‘’. To date, their clinical significance is unknown.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1559
1999-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1559.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1559&mimeType=html&fmt=ahah

References

  1. Baldani J. I., Pot B., Kirchhof G.8 other authors 1996; Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int J Syst Bacteriol 46:802–810
    [Google Scholar]
  2. Beji A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from gram-negative bacilli. Anal Biochem 162:18–23
    [Google Scholar]
  3. Bowman J. P., Sly L. I., Hayward A. C., Spiegel Y., Stacke-brandt E. 1993; Telluria mixta (Pseudomonas mixta Bowman, Sly, and Hayward 1988) gen. nov., comb, nov., and Telluria chitinolytica sp. nov., soil-dwelling organisms which actively degrade polysaccharides. Int J Syst Bacteriol 43:120–124
    [Google Scholar]
  4. Brosch R., Lefevre M., Grimont F., Grimont P. A. D. 1996; Taxonomic diversity of pseudomonads revealed by computerinterpretation of ribotyping data. Syst Appl Microbiol 19:541–555
    [Google Scholar]
  5. Coroler L., Elomari M., Hoste B., Gillis M., Izard D., Leclerc H. 1996; Pseudomonas rhodesiae sp. nov., a new species isolated from natural mineral waters. Syst Appl Microbiol 19:600–607
    [Google Scholar]
  6. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a singlestrand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J Bacteriol 115:904–911
    [Google Scholar]
  7. Dabboussi F., Hamze M., Elomari M., Verhille S., Baida N., Izard D., Leclerc H. 1999; Pseudomonas libanensis sp. nov., a new species isolated from Lebanese spring waters. Int J Syst Bacteriol 49:1091–1101
    [Google Scholar]
  8. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754
    [Google Scholar]
  9. De Ley J. 1992 The Proteobacteria’. ribosomal RNA cistron similarities and bacterial taxonomy. The Prokaryotes, 2nd. 22109–2140 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  10. De Vos P., Kersters K., Falseo E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comámonos Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int J Syst Bacteriol 35:443–453
    [Google Scholar]
  11. Edwards U., Rogall T., Blocker H., Emde M., Bóttger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853
    [Google Scholar]
  12. Elomari M., Coroler L, Hoste B., Gillis M., Izard D., Leclerc H. 1996; DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 46:1138–1144
    [Google Scholar]
  13. Elomari M., Coroler L, Verhille S., Izard D., Leclerc H. 1997; Pseudomonas monteillii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 47:846–852
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  15. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  16. Gould W. D., Hagedorn C., Bardinelli T. R., Zablotow R. H. 1985; New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl Environ Microbiol 49:28–32
    [Google Scholar]
  17. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330
    [Google Scholar]
  18. Hoeniger J. F. M. 1965; Development of flagella by Proteus mirabilis. J Gen Microbiol 40:29–42
    [Google Scholar]
  19. Holmes B., Steigerwalt A. G., Weaver R. E., Brenner D. J. 1987; Chryseomonas luteola comb. nov. and Flavimonas oryzihabitans gen. nov., comb, nov., Pseudomonas Aikz species from human clinical specimens and formerly known, respectively, as groups Ve-1 and Ve-2. Int J Syst Bacteriol 37:245–250
    [Google Scholar]
  20. Kersters K., Ludwig W., Vancanneyt M., De Vos P., Gillis M., Schleifer K. H. 1996; Recent changes in the classification of the pseudomonads: an overview. Syst ApplMicrobiol 19:465–477
    [Google Scholar]
  21. van der Kooij D. 1990; Growth measurements with Pseudomonas aeruginosa, Aeromonas hydrophila and autochthonous bacteria to determine the biological stability of drinking water. Riv Itai Ig5–6375–382
    [Google Scholar]
  22. Meyer O., Stackebrandt E., Auling G. 1993; Reclassification of ubiquinone Q-10 containing carboxidotrophic bacteria: transfer of ‘(Pseudomonas) carboxydovorans’ OM5T to Oligotropha, gen. nov., as Oligotropha carboxydovorans, comb, nov., transfer of 1 (Alcaligenes) carboxydus’ DSM 1086T to Carbophilus, gen. nov., as Carbophilus carboxidus, comb, nov., transfer of ‘(Pseudomonas) compransoris’ DSM 1231T to Zavarzinia gen. nov., as Zavarzinia compransoris, comb, nov., and emended descriptions of the new genera. Syst Appl Microbiol 16:390–395
    [Google Scholar]
  23. Migula W. 1894; Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238
    [Google Scholar]
  24. Moore E. R. B., Mau M., Arnscheidt A., Bóttger E. G, Hutson R. A., Collins M. D., Van De Peer Y., De Wachter R., Timmis K. N. 1996; The determination and comparison of the 16S rRNA gene sequence of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492
    [Google Scholar]
  25. Nakagawa Y., Sakane T., Yokota A. 1996; Transfer of ‘ Pseudomonas riboflavina’ (Foster 1944), a Gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46:16–22
    [Google Scholar]
  26. Oger G, Hernandez J. F., Delattre J. M., Delabroise A. H., Krupsky S. 1987; Etude par épifluorescence de l’évolution de la microflore totale dans une eau minérale embouteillée. Water Res 21:469–474
    [Google Scholar]
  27. Palleroni N.J. 1984 Genus I. Pseudomonas Migula 1894, 237AL. Bergey’s Manual of Systematic Bacteriology 1141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  28. Palleroni N. J., Bradbury J. F. 1993; Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 43:606–609
    [Google Scholar]
  29. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  31. Schwaller P., Schmidt-Lorenz W. 1981; La flore microbienne de quatre eaux minérales non gazéifiées et mises en bouteilles. 2e communication: les Pseudomonas et autres bactéries à Gram négatif. Composition fine de la flore. Zbl Bakteriol Mikrobiol Hyg 1 Abt Orig C 2:179–196
    [Google Scholar]
  32. Segers P., Vancanneyt M., Pot B., Torek U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb, nov., respectively. Int J Syst Bacteriol 44:499–510
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  34. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  36. Urakami T., Araki H., Oyanagi H., Suzuki K.-I., Komagata K. 1992; Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 42:84–92
    [Google Scholar]
  37. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  38. Verhille S., Elomari M., Coroler L., Izard D., Leclerc H. 1997; Phenotypically based taxonomy of fluorescent Pseudomonas strains isolated from four natural mineral waters. Syst Appl Microbiol 20:137–149
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  40. Willems A., Busse J., Goor M.8 other authors 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and ‘ Pseudomonas carboxydoflava’), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333
    [Google Scholar]
  41. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb, nov., Acidovorax delafieldii comb, nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 40:384–398
    [Google Scholar]
  42. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119
    [Google Scholar]
  43. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275
    [Google Scholar]
  44. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y. 1995; Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb, nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 39:897–904
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1559
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1559
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error