1887

Abstract

Fifty rhizobial isolates from root nodules of , a small leguminous plant native to Mexico, were identified as on the basis of the results of PCR-RFLP and RFLP analyses of small-subunit rRNA genes, multilocus enzyme electrophoresis and DNA-DNA homology. They are, however, a restricted group of lineages with low genetic diversity within the species. The isolates from differed from the strains that originated from bean plants () in the size and replicator region of the symbiotic plasmid and in symbiotic-plasmid-borne traits such as gene sequence and organization, melanin production and host specificity. A new biovar, bv. mimosae, is proposed within to encompass isolates obtained from . The strains from common bean plants have been designated previously as bv. phaseoli. Strains of both biovars could nodulate , but only those of bv. mimosae could form nitrogen-fixing nodules on .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1479
1999-10-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1479.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1479&mimeType=html&fmt=ahah

References

  1. Amarger N., Macheret V., Laguerre G. 1997; Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006
    [Google Scholar]
  2. Barrera L. L, Trujillo M. E., Goodfellow M., García F. J., Hernández-Lucas I., Dávila G., van Berkum P., Martinez-Romero E. 1997; Biodiversity of bradyrhizobia nodulating Lupinus spp. Int J Syst Bacteriol 47:1086–1091
    [Google Scholar]
  3. van Berkum P., Beyene D., Eardly B. D. 1996; Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int J Syst Bacteriol 46:240–244
    [Google Scholar]
  4. van Berkum P., Beyene D., Bao G., Campbell T. A., Eardly B. D. 1998; Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogenfixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22
    [Google Scholar]
  5. Boivin C., Ndoye I., Lortet G., Ndiaye A., de Lajudie P., Dreyfus B. 1997; The Sesbania root symbionts Sinorhizobium saheli and S. teranga bv. sesbaniae can form stem nodules on Sesbania rostrata although they are less adapted to stem nodulation than Azorhizobium caulinodans. Appl Environ Microbiol 63:1040–1047
    [Google Scholar]
  6. Brom S., García-de los Santos A., Stepkowsky T., Flores M., Dávila G., Romero D., Palacios R. 1992; Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J Bacteriol 174:5183–5189
    [Google Scholar]
  7. Caballero-Mellado J., Martinez-Romero E. 1994; Limited genetic diversity in the endophytic sugarcane bacterium Aceto-bacter diazotrophicus. Appl Environ Microbiol 60:1532–1537
    [Google Scholar]
  8. Caballero-Mellado J., Martinez-Romero E. 1999; Soil fertilization limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26:111–121
    [Google Scholar]
  9. Campelo A. B., Dobereiner J. 1969; Estudo sobre inoculaçao cruzada de algumas leguminosas florestais. Pesqui Agropecu Bras 4:67–72
    [Google Scholar]
  10. Chen W. X., Li G. S., Qi Y. L, Wang E. T., Yuan H. L., Li J. L. 1991; Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280
    [Google Scholar]
  11. Chen W. X., Wang E. T., Wang S. Y., Li Y. B., Chen X. Q., Li Y. 1995; Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159
    [Google Scholar]
  12. Chen W.-X., Tan Z.-Y., Gao J.-L., Li Y., Wang E.-T. 1997; Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873
    [Google Scholar]
  13. Dénarié J., Debellé F., Promé J.-C. 1996; Rhizobium lipochitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535
    [Google Scholar]
  14. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351
    [Google Scholar]
  15. Doyle J. J. 1995 DNA data and legume phylogeny: a progress report. Advances in Legume Systematics 7: Phylogeny11–30 Edited by Crisp M., Doyle J. J. Kew: Royal Botanic Gardens;
    [Google Scholar]
  16. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98
    [Google Scholar]
  17. Dupuy N., Willems A., Pot B.7 other authors 1994; Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol 44:461–473
    [Google Scholar]
  18. Eardly B. D., Young J. P. W., Selander R. K. 1992; Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl Environ Microbiol 58:1809–1815
    [Google Scholar]
  19. Eardly B. D., Wang F.-S., Whittam T. S., Selander R. K. 1995; Species limits in Rhizobium populations that nod ulate the common bean (Phaseolus vulgaris). Appl Environ Microbiol 61:507–512
    [Google Scholar]
  20. Fáhraeus G. 1957; The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381
    [Google Scholar]
  21. Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X. 1997; Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401
    [Google Scholar]
  22. García-de los Santos A., Brom S. 1997; Characterization of two plasmid-borne Ipsf loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants. Mol Plant-Microbe Interact 7:891–902
    [Google Scholar]
  23. Genetics Computer Group 1995 Program Manual for the Wisconsin Package, Version 8Genetics Computer GroupMadison, 53711 WI, USA
    [Google Scholar]
  24. Geniaux E., Laguerre G., Amarger N. 1993; Comparison of geographically distant populations of Rhizobium isolated from root nodules of Phaseolus vulgaris. Mol Ecol 2:295–302
    [Google Scholar]
  25. Geniaux E., Flores M., Palacios R., Martinez E. 1995; Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. Int J Syst Bacteriol 45:392–394
    [Google Scholar]
  26. Girard L, Brom S., Romero D. 1998; Characterization of reiterated fix genes in Rhizobium etli CFN42. 16th North American Conference on Symbiotic Nitrogen Fixation. V.09February 1-6Cancún, México
    [Google Scholar]
  27. Graham P. H., Sadowsky M. J., Keyser H. H.8 other authors 1991; Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587
    [Google Scholar]
  28. Haukka K., Lindstrom K., Young J. P. W. 1998; Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426
    [Google Scholar]
  29. Hernández-Lucas I., Segovia L., Martinez-Romero E., Pueppke S. G. 1995; Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. ApplEnviron Microbiol 61:2775–2779
    [Google Scholar]
  30. Hynes M. F., McGregor N. F. 1990; Two plasmids other than the nodulation plasmid are necessary for formation of nitrogenfixing nodules by Rhizobium leguminosarum. Mol Microbiol 4:567–574
    [Google Scholar]
  31. Jarvis B. D. W., van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J.-C., Gillis M. 1997; Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898
    [Google Scholar]
  32. Jordan D. C. 1984 Family III. Rhizobiaceae Conn 1938, 321AL. Bergey’s Manual of Systematic Bacteriology 1234–254 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  33. Krishnan H. B., Lewin A., Fellay R., Broughton W. J., Pueppke S. G. 1992; Differential expression of nodS accounts for the varied abilities of Rhizobium fredii USDA257 and Rhizobium sp. strain NGR234 to nodulate Leucaena spp. Mol Microbiol 6:3321–3330
    [Google Scholar]
  34. Laguerre G., Fernandez M. P., Edel V., Normand P., Amarger N. 1993; Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris L. Int J Syst Bacteriol 43:761–767
    [Google Scholar]
  35. Laguerre G., Allard M.-R., Revoy F., Amarger N. 1994; Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63
    [Google Scholar]
  36. Laguerre G., Mavingui P., Allard M.-R., Charnay M. P., Louvrier P., Mazurier S. I., Rigottier-Gois L., Amarger N. 1996; Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62:2029–2036
    [Google Scholar]
  37. de Lajudie P., Willems A., Pot B.7 other authors 1994; Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb, nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733
    [Google Scholar]
  38. de Lajudie P., Willems A., Nick G.9 other authors 1998a; Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382
    [Google Scholar]
  39. de Lajudie P., Laurent-Fulele E., Willems A., Torek U., Coopman R., Collins M. D., Kersters K., Dreyfus B., Gillis M. 1998b; Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290
    [Google Scholar]
  40. Lindstrom K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367
    [Google Scholar]
  41. Martínez E., Pardo M. A., Palacios R., Cevallos M. A. 1985; Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J Gen Microbiol 131:1779–1786
    [Google Scholar]
  42. Martínez E., Palacios R., Sánchez F. 1987; Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834
    [Google Scholar]
  43. Martínez E., Romero D., Palacios R. 1990; The Rhizobium genome. Crit Rev Plant Sci 9:59–93
    [Google Scholar]
  44. Martinez-Romero E. 1994; Recent developments in Rhizobium taxonomy. Plant Soil 161:11–20
    [Google Scholar]
  45. Martinez-Romero E. 1996 Comments on Rhizobium systematics. Lessons from R. tropici and R. etli. Biology of Plant-Microbe Interactions503–508 Edited by Stacey G., Mullin B., Gresshoff P. M. St Paul, MN: International Society for Plant-Microbe Interactions;
    [Google Scholar]
  46. Martinez-Romero E., Caballero-Mellado J. 1996; Rhizobium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci 15:113–140
    [Google Scholar]
  47. Martinez-Romero E., Jarvis B. D. W. 1993; International Committee on Systematic Bacteriology, Subcommittee on the Taxonomy of Agrobacterium and Rhizobium, Minutes of the Meeting. Int J Syst Bacteriol 43:622
    [Google Scholar]
  48. Martinez-Romero E., Segovia L, Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426
    [Google Scholar]
  49. Michiels J., D’hooghe I., Verreth C., Pelemans H., Vanderleyden J. 1994; Characterization of the Rhizobium leguminosarum biovar phaseoli nifA gene, a positive regulator of nif gene expression. Arch Microbiol 161:404–408
    [Google Scholar]
  50. Moreira F. M. S., Haukka K., Young J. P. W. 1998; Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol Ecol 7:889–895
    [Google Scholar]
  51. Morett E., Moreno S., Espin G. 1988; Transcription analysis of the three nifH genes of Rhizobium phaseoli with gene fusions. Mol Gen Genet 213:499–504
    [Google Scholar]
  52. Moyer C. L, Tiedje J. M., Dobbs F. C., Karl D. M. 1996; A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl Environ Microbiol 62:2501–2507
    [Google Scholar]
  53. Nei M., Li W. H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273
    [Google Scholar]
  54. Nour S. M., Fernandez M. P., Normand P., Cleyet-Marel J.-C. 1994; Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522
    [Google Scholar]
  55. Nour S. M., Cleyet-Marel J.-C., Normand P., Fernandez M. P. 1995; Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648
    [Google Scholar]
  56. Novikova N. I., Safronova V. 1992; Transconjugants of Agrobacterium radiobacter harbouring sym genes of R. galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiol Lett 93:262–268
    [Google Scholar]
  57. Oyaizu H., Matsumoto S., Minamisawa K., Gamou T. 1993; Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J Gen Appl Microbiol 39:339–354
    [Google Scholar]
  58. Pérez-Ramírez N. O., Rogel M. A., Wang E. T., Castellanos J. Z., Martinez-Romero E. 1998; Seeds of Phaseolus vulgaris carry Rhizobium etli. FEMS Microbiol Ecol 26:289–296
    [Google Scholar]
  59. Pinero D., Martínez E., Selander R. K. 1988; Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 54:2825–2832
    [Google Scholar]
  60. Quinto C., de la Vega H., Flores M., Fernández L, Bailado T., Soberón G., Palacios R. 1982; Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature 299:724–726
    [Google Scholar]
  61. Ramirez-Romero M. A., Bustos P., Girard L, Rodriguez O., Cevallos M. A., Dávila G. 1997; Sequence, localization and characteristics of the replicator region of the symbiotic plasmid of Rhizobium etli. Microbiology 143:2825–2831
    [Google Scholar]
  62. Raven P. H., Polhill R. M. 1981 Biogeography of the Leguminosae. Advances in Legume Systematics VI27–34 Edited by Polhill R. M., Raven P. H. Kew: Royal Botanic Gardens;
    [Google Scholar]
  63. Relic B., Perret X., Estrada-Garcia M. T., Kopcinska J., Golinowski W., Krishnan H. B., Pueppke S. G., Broughton W. J. 1994; Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–178
    [Google Scholar]
  64. Rhoads D. D., Roufa D. J. 1989 seqaid n (tm) version 3.5. Molecular Genetics Laboratory, Kansas State University; KS, USA:
    [Google Scholar]
  65. Romero D., Brom S., Martinez-Salazar J., de Lourdes Girard M., Palacios R., Davila G. 1991; Amplification and deletion of a nod-nif region in the symbiotic plasmid of Rhizobium phaseoli. J Bacteriol 173:2435–2441
    [Google Scholar]
  66. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  67. Segovia L., Pinero D., Palacios R., Martinez-Romero E. 1991; Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl Environ Microbiol 57:426–433
    [Google Scholar]
  68. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377
    [Google Scholar]
  69. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  70. Sessitsch A., Hardarson G., Akkermans A. D. L., De Vos W. M. 1997; Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Austrian soil. Mol Ecol 6:601–608
    [Google Scholar]
  71. Souza V., Eguiarte L. E. 1997; Bacteria gone native vs. bacteria gone awry?: plasmidic transfer and bacterial evolution. Proc Natl Acad Sci USA 94:5501–5503
    [Google Scholar]
  72. Souza V., Nguyen T. T., Hudson R. R., Pinero D., Lenski R. E. 1992; Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex?. Proc Natl Acad Sci USA 89:8389–8393
    [Google Scholar]
  73. Stanley J., Dowling D. N., Stucker M., Broughton W. J. 1987; Screening costramid libraries for chromosomal genes: an alternative interspecific hybridization method. FEMS Microbiol Lett 48:25–30
    [Google Scholar]
  74. Sullivan J. T., Patrick H. N., Lowther W. L., Scott D. B., Ronson C. W. 1995; Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92:8985–8989
    [Google Scholar]
  75. Tan Z.-Y., Xu X.-D., Wang E.-T., Gao J.-L., Martinez-Romero E., Chen W.-X. 1997; Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879
    [Google Scholar]
  76. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  77. Trinick M. J. 1980; Relationships among the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other Rhizobium groups. J Appl Bacteriol 49:39–53
    [Google Scholar]
  78. Ueda T., Suga Y., Yahiro N., Matsuguchi T. 1995; Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. J Bacteriol 177:468–472
    [Google Scholar]
  79. Vincent J. M. 1970 A Manual for the Practical Study of the Root Nodule Bacteria. International Biological Programme IBP Handbook 15. Oxford: Blackwell;
    [Google Scholar]
  80. Wang E. T., van Berkum P., Beyene D., Sui X. H., Dorado O., Chen W. X., Martinez-Romero E. 1998; Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699
    [Google Scholar]
  81. Wang E. T., van Berkum P., Sui X. H., Beyene D., Chen W. X., Martinez-Romero E. 1999a; Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65
    [Google Scholar]
  82. Wang E. T., Martinez-Romero J., Martinez-Romero E. 1999b; Genetic diversity of rhizobia nodulating Leucaena leucocephala in Mexican soils. Mol Ecol 8:711–724
    [Google Scholar]
  83. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  84. Young J. P. W. 1985; Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site. J Gen Microbiol 131:2399–2408
    [Google Scholar]
  85. Young J. P. W., Haukka K. E. 1996; Diversity and phylogeny of rhizobia. New Phytol 133:87–94
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-49-4-1479
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error