1887

Abstract

A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3 stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 × 4.0–6.0 μm) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35 °C and pH 7.5 on arginine with a generation time of 16 h. Good growth was obtained on arginine, histidine, threonine and glycine. Acetate was the end-product formed from all these substrates, but in addition, a trace of formate was detected from arginine and histidine, and ornithine was produced from arginine. Strain GLU-3 grew slowly on glutamate and produced acetate, carbon dioxide, formate, hydrogen and traces of propionate as the end-products. In syntrophic association with , strain GLU-3 oxidized arginine, histidine and glutamate to give propionate as the major product; acetate, carbon dioxide and methane were also produced. Strain GLU-3 did not degrade alanine and the branched-chain amino acids valine, leucine and isoleucine either in pure culture or in association with . The nearest phylogenetic relative of strain GLU-3 was the thermophile (similarity value of 89.5%). As strain GLU-3 is phylogenetically, physiologically and genotypically different from other amino-acid-degrading genera, it is proposed that it should be designated a new species of a new genus gen. nov., sp. nov. (DSM 12260).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-3-975
1999-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/3/ijs-49-3-975.html?itemId=/content/journal/ijsem/10.1099/00207713-49-3-975&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum R. J., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  4. Barker H. A. 1981; Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50:23–40
    [Google Scholar]
  5. Chen G., Russell J. M. 1988; Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostrepto- coccus. Appl Environ Microbiol 54:2742–2749
    [Google Scholar]
  6. Chen G., Russell J. M. 1989; More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol 55:1052–1057
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., , Fernandez- Garayzabal J., Garcia P., Cai J., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826
    [Google Scholar]
  8. Fardeau M. L., Cayol J. L., Magot M., Ollivier B. 1993; Haoxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from a oil-producing well. FEMS Microbiol Lett 13:327–332
    [Google Scholar]
  9. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019
    [Google Scholar]
  10. Felsenstein J. 1993; PHYLIP (Phylogenetic Inference Package) version 3.51c. Department of Genetics, University of Washington, Seattle, WA USA
    [Google Scholar]
  11. Fendrich C., Hippe H., Gottschalk G. 1990; Clostridium halophilium sp. nov. and C. litorale sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction. Arch Microbiol 154:127–132
    [Google Scholar]
  12. Guangsheng C., Plugge C. M., Roelofsen W., Houwen F. P., Stams A. J. M. 1992; Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate. Arch Microbiol 157:169–175
    [Google Scholar]
  13. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B117–132
    [Google Scholar]
  14. Imhoff-Stuckle D., Pfenning N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini. Arch Microbiol 136:194–198
    [Google Scholar]
  15. Mclnerney M. J. 1988; Anaerobic hydrolysis and fermentation of fats and proteins. In Biology of Anaerobic Organisms pp 373–415 Edited by Zender A.J.B. New York: Wiley;
    [Google Scholar]
  16. McSweeny C. S., Allison M. J., Mackie R. I. 1993; Amino acid utilization by the ruminal bacterium Synergistes jonesii strain 78-1. Arch Microbiol 159:131–135
    [Google Scholar]
  17. Magot M., Ravot G., Campaignolle X., Ollivier B., Patel B. K. C., Fardeau M.-L., Thomas P., Crolet J.-L., Garcia J.-L. 1997; Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824
    [Google Scholar]
  18. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  20. Moore S., Spackman D. H., Stein W. H. 1958; Chromato-graphy of amino acids on sulfonated polystyrene resins: an improved system. Anal Chem 30:1158–1190
    [Google Scholar]
  21. Nanninga H. J., Drent W. J., Gottschal J. C. 1987; Fermen-tation of glutamate by Selenomonas acidaminophila sp. nov. Arch Microbiol 147:152–157
    [Google Scholar]
  22. Orlygsson J., Krooneman J., Collins M. D., Pascual C., Gottschal J. C. 1996; Clostridium acetireducens sp. nov., a novel amino acid-oxidizing, acetate-reducing anaerobic bacterium. Int J Syst Bacteriol 46:454–459
    [Google Scholar]
  23. Paster B. J., Russell J. B., Yang C. M., Chow J. J. M., Woese C. R., Tanner R. 1993; Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int J Syst Bacteriol 43:107–110
    [Google Scholar]
  24. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol Lett 113:81–86
    [Google Scholar]
  25. Rogosa M. 1969; Acidaminococcus gen. nov., Acidaminococcus fermentans sp. nov., an anaerobic Gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol 98:756–766
    [Google Scholar]
  26. Smith E. A., MacFarlane G. T. 1997; Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3:327–337
    [Google Scholar]
  27. Stams A. J. M., Hansen T. A. 1984; Fermentation of glutamate and other compounds by Acidaminobacter hydrogeno- formans gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and cocultures with sulfate-reducing and methanogenic bacteria. Arch Microbiol 137:329–337
    [Google Scholar]
  28. Van de Peer Y., De Wachter R. 1993; TREECON: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci 9:177–182
    [Google Scholar]
  29. Wilde E., Collins M. D., Hippe H. 1997; Clostridiumpascui sp. nov., a new glutamate-fermenting sporeformer from a pasture in Pakistan. Int J Syst Bacteriol 47:164–170
    [Google Scholar]
  30. Winker S., Woese C. R. 1991; A definition of the domain Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165
    [Google Scholar]
  31. Zhang X., Mandelco L., Wiegel J. 1994; Clostridium hydroxybenzoicum sp. nov., an amino acid-utilizing, hydroxybenzoate-decarboxylating bacterium isolated from methanogenic freshwater pond sediment. Int J Syst Bacteriol 44:214–222
    [Google Scholar]
  32. Zindel U., Freudenberg W., Rieth M., Andreesen J. R., Schnell J., Widdel F. 1988; Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Arch Microbiol 150:254–266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-3-975
Loading
/content/journal/ijsem/10.1099/00207713-49-3-975
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error