1887

Abstract

Three strains, designated VS-751, VS-511 and VS-732, of a strictly anaerobic, moderately halophilic, Gram-negative, rod-shaped bacterium were isolated from a highly saline (15-20%) brine from an oil reservoir in central Oklahoma, USA. The optimal concentration of NaCI for growth of these three strains was 2 M (12%), and the strains also grew in the presence of an additional 1 M MgCl. The strains were mesophilic and grew at a pH range of 6–8. Carbohydrates used by all three strains included glucose, fructose, arabinose, galactose, maltose, mannose, cellobiose, sucrose and inulin. Glucose fermentation products included ethanol, acetate, H and CO, with formate produced by two of the three strains. Differences were noted among strains in the optimal temperature and pH for growth, the maximum and minimum NaCl concentration that supported growth, substrate utilization and cellular fatty acid composition. Despite the phenotypic differences among the three strains, analysis of the 16S rRNA gene sequences and DNA-DNA hybridizations showed that these three strains were members of the same genospecies which belonged to the genus . The phenotypic and genotypic characteristics of strains VS-751, VS-511 and VS-732 are different from those of previously described species of . It is proposed that strain VS-751 (ATCC 7001031) be established as the type strain of a new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-3-953
1999-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/3/ijs-49-3-953.html?itemId=/content/journal/ijsem/10.1099/00207713-49-3-953&mimeType=html&fmt=ahah

References

  1. Adkins J. P., Madigan M. T., Mandelco L., Woese C. R., Tanner R. S. 1993; Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 43:514–520
    [Google Scholar]
  2. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane- sulfonic acid (HS-CoM)-dependent growth of Methano- bacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  3. Bhupathiraju V. K., Sharma P. K., Mdnerney M. J., Knapp R. M., Fowler K., Jenkins W. 1991; Isolation and charac-terization of novel halophilic anaerobic bacteria from oil field brines. Dev Petrol Sci 31:131–143
    [Google Scholar]
  4. Bhupathiraju V. K., Mclnerney M. J., Knapp R. M. 1993; Pretest studies for a microbial enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol 711:19–34
    [Google Scholar]
  5. Bhupathiraju V. K., Oren A., Sharma P. K., Tanner R. S., Woese C. R., Mdnerney M. J. 1994a; Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int J Syst Bacteriol 44:565–572
    [Google Scholar]
  6. Bhupathiraju V. K., Tanner R. S., Mdnerney M. J. 1994b; Characterization of fermentative halophilic anaerobes isolated from subterranean brines. In Abstracts of the 94th General Meeting of the American Society for Microbiology abstract 1–6 p 254 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Cayol J.-L., Ollivier B., Lawson A.S.A., Fardeau M.-L., Ageron E., Grimont P. A.-L., Prensier G., Guezennec J., Magot M., Garcia J. -L. 1994; Haloincola saccharolytica subsp. senegalensis subsp. nov., isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica. Int J Syst Bacteriol 44:805–811
    [Google Scholar]
  8. Cayol J.-L., Ollivier B., Patel B.K.C., Ageron E., Grimont P.A.D., Prensier G., Garcia J.-L. 1995; Haloanaerobium lacusroseus sp. nov., an extremely halophilic fermentative bacterium from the sediments of a hypersaline lake. Int J Syst Bacteriol 45:790–797
    [Google Scholar]
  9. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  10. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  11. Jantzen E., Hofstad T. 1981; Fatty acids of Fusobacterium species: taxonomic implications. J Gen Microbiol 123:163–171
    [Google Scholar]
  12. Johnson J. L. 1994; Similarity analysis of DNA. In Methods for General and Molecular Bacteriology pp 655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  17. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  18. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. 1988; Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella, (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. J Clin Microbiol 26:484–492
    [Google Scholar]
  19. Ollivier B., Caumette P., Garcia J.-L., Mah R. A. 1994; Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38
    [Google Scholar]
  20. Oyaizu H., Debrunner-Vossbrinck B., Mandelco L., Studier J. A., Woese C. R. 1987; The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst Appl Microbiol 9:47–53
    [Google Scholar]
  21. Patel B.K.C., Andrew K. T., Ollivier B., Mah R. A., Garcia J. L. 1995; Re-evaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA gene. FEMS Microbiol Lett 134:115–119
    [Google Scholar]
  22. Rainey F. A., Zhilina T. N., Boulygina E. S., Stackebrandt E., Tourova T. P., Zavarzin G. A. 1995; The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1:185–199
    [Google Scholar]
  23. Ravot G., Magot M., Ollivier B., Patel B.K.C., Ageron E., Grimont P.A.D., Thomas P., Garcia J.-L. 1997; Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol Lett 147:81–88
    [Google Scholar]
  24. Rengpipat S., Langworthy T. A., Zeikus J. G. 1988; Halo-bacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep subsurface hypersaline environments. Syst Appl Microbiol 11:28–35
    [Google Scholar]
  25. Sassar M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI technical note 101. Newark, DE: MIDI;
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 655–682 Edited by Gerhardt P., Murray R.G.E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Tanner R. S. 1997; Cultivation of bacteria and fungi. In Manual of Environmental Microbiology pp 52–60 Edited by Hurst C. J., Knudsen G. R., Mclnerney M. J., Stetzenbach L. D.
    [Google Scholar]
  28. Walter M. V. Washington, DC: American Society for Microbiology;
  29. Tourova T. P., Boulygina E. S., Zhilina T. N., Hanson R. S., Zavarzin G. A. 1995; Phylogenetic study of haloanaerobic bacteria by 16S ribosomal RNA sequences analysis. Syst Appl Microbiol 18:189–195
    [Google Scholar]
  30. Tsai C.-R., Garcia J.-L., Patel B.K.C., Cayol J.-L., Baresi L., Mah R. A. 1995; Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake Utah. Int J Syst Bacteriol 45:301–307
    [Google Scholar]
  31. Zeikus J. G., Hegge P. W., Thompson T. E., Phelps T. J., Langworthy T. A. 1983; Isolation and description of Haloanaerobium praevalens gen. nov. sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Curr Microbiol 9:225–234
    [Google Scholar]
  32. Zhao H., Yang D., Woese C. R., Bryant M. P. 1989; Assignment of the syntrophic fatty acid-degrading anaerobe Clostridium bryantii to Syntrophospora bryantii gen. nov., comb nov. Int J Syst Bacteriol 40:40–44
    [Google Scholar]
  33. Zhilina T. N., Zavarzin G. A., Bulygina E. S., Kevbrin V. V., Osipov G. A., Chumakov K. M. 1992; Ecology, physiology and taxonomy studies on a new taxon of Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov. Syst Appl Microbiol 15:275–284
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-3-953
Loading
/content/journal/ijsem/10.1099/00207713-49-3-953
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error