1887

Abstract

Phenotypic data indicate that gliding, yellow/orange-pigmented, agar-digest bacterial strains were members of the (CFB) group. The strains were isolated from the surface of the marine benthic macroalga and the surrounding seawater at three localities Danish waters. The bacteria were Gram-negative, flexirubin-negative, aerobic, catalase-positive and oxidase-negative and were psychrophilic and halophilic. All strains utilized -fructose, -fucose and α-ketobutyric acid and degraded alginic acid, carrageenan, starch and autoclaved yeast cells. Amplification with primers specific for repetitive extragenic palindromic elements by PCR divided the strains of this study into two groups. Both groups showed unique PCR amplification patterns compared to reference strains of the CFB group. Phylogenetic analysis of 16S rDNA sequences showed association of these organisms and [ at the genus level. Hybridization of total chromosomal DNA revealed that the new strains and [ ATCC 23178 were clearly distinct from each other and other previously described species of the CFB group. A new genus is described, gen. nov. comprising two new species, gen. nov., sp. nov. (NN015840 = LMG 18535) and gen. nov., sp. nov. (NN015860 = LMG 18536), as well as the emendation of [ to gen. nov., comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-3-1231
1999-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/3/ijs-49-3-1231.html?itemId=/content/journal/ijsem/10.1099/00207713-49-3-1231&mimeType=html&fmt=ahah

References

  1. Bauwens M., de Ley J. 1981; Improvements in the taxonomy of Flavobacterium by DNA:rRNA hybridizations. In The Flavobacterium-Cytophaga (GBF Monograph Series no. 5) pp. 27–31 Edited by Reichenbach H., Weeks O. B. Weinheim: VCH;
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatiles Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148
    [Google Scholar]
  3. Bolinches J., Lemos M. L., Barja J. L. 1988; Population dynamics of heterotrophic bacterial communities associated with Fucus vesiculosus and Ulva rigida in an estuary. Microb Ecol 15:345–357
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Brown M. V., Nichols D. S., McMeekin T. A. 1997; Psychroserpens burtonensis gen. nov., sp. nov. and Gelidibacter algens gen. nov., sp. nov., psychro- philic bacteria from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47:670–677
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Lewis T., Skerratt J. H., Brown J. L., Nichols D. S., McMeekin T. A. 1998; Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al., 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:1601–1609
    [Google Scholar]
  6. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  7. Chan E. C. S., McManus E. A. 1969; Distribution, characterization, and nutrition of marine microorganisms from the algae Polysiphonia lanosa and Ascophyllum nodosum. Can J Microbiol 15:409–420
    [Google Scholar]
  8. Christensen P. J. 1977; The history, biology, and taxonomy of the Cytophaga group. Can J Microbiol 23:1599–1653
    [Google Scholar]
  9. Colwell R. R., Citarella R. V., Chen P. K. 1966; DNA base composition of Cytophaga marinoflava sp. nov. determined by buoyant density measurements in cesium chloride. Can J Microbiol 12:1099–1103
    [Google Scholar]
  10. Duan D., Xu L., Fei X., Xu H. 1995; Short communication: marine organisms attached to surfaces in Jiaozhou Bay, China. World J Microbiol Biotechnol 11:351–352
    [Google Scholar]
  11. Ehrenberg C. G. 1838 Die Infusionsthierchen als vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Leipzig: Folio;
    [Google Scholar]
  12. Fenchel T., Jorgensen B. B. 1977; Detritus food chains of aquatic ecosystems: the role of bacteria. Adv Microbiol Ecol 1:1–57
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  14. Fuhrman J. 1992; Bacterioplankton roles in cycling of organic matter: the microbial food web. In Primary Productivity and Biogeochemical Cycles in the Sea pp. 361383 Edited by Falkowski P. G., Woodhead A. D. New York: Plenum;
    [Google Scholar]
  15. Gosink J. J., Woese C. R., Staley J. T. 1998; Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P.fllamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘ Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235
    [Google Scholar]
  16. Hellebust J. A. 1974; Extracellular products. In Algal Physiology and Biochemistry pp. 838–863 Edited by Stewart W. D. Oxford: Blackwell;
    [Google Scholar]
  17. Hollohan B. T., Dabinett P. E., Gow J. A. 1986; Bacterial succession during biodegradation of the kelp Alaria esculenta (L.) Greville. Can J Microbiol 32:505–512
    [Google Scholar]
  18. Johansen J. E. 1996 Bacteria on marine benthic macroalgae in Danish Waters pp. 1–136 MSc thesis, University of Copenhagen (in Danish)
    [Google Scholar]
  19. Johnsen K., Andersen S., Christensen C. S. 1996; Phenotypic and genotypic characterisation of phenanthrene-degrading fluorescent Pseudomonas biovars. Appl Environ Microbiol 62:3818–3825
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  21. Kishino H., Hasegawa M. 1989; Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29:170–179
    [Google Scholar]
  22. Kong M. K., Chan K. 1979; A study on the bacterial flora isolated from marine algae. Bot Mar 22:83–97
    [Google Scholar]
  23. Laycock R. A. 1974; The detrital food chain based on seaweeds. I. Bacteria associated with the surface of Laminaria fronds. Mar Biol (Berl) 25:223–231
    [Google Scholar]
  24. Lewin R. A. 1969; A classification of Flexibacteria. J Gen Microbiol 58:189–206
    [Google Scholar]
  25. Lobban C. A., Harrison P. J. 1994 Seaweed Ecology and Physiology Cambridge: Cambridge University Press;
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  27. van der Meulen H. J., Harder W., Veldkamp H. 1974; Isolation and characterisation of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie Leewenhoek J Microbiol 40:329–346
    [Google Scholar]
  28. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161
    [Google Scholar]
  29. Nakagawa Y., Yamasato K. 1996; Emendation of the Genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int J Syst Bacteriol 46:599–603
    [Google Scholar]
  30. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761
    [Google Scholar]
  31. Paerl H. W., Pinckney J. L. 1996; A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecol 31:225–247
    [Google Scholar]
  32. Percival E. 1968; Marine algal carbohydrates. Oceanogr Mar Biol Annu Rev 6:137–161
    [Google Scholar]
  33. Percival E. 1979; The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14:103–117
    [Google Scholar]
  34. Pinhassi J., Zweifel U.-L., Hagstrom A. 1997; Dominant marine bacterioplankton species found among colony-forming bacteria. Appl Environ Microbiol 63:3359–3366
    [Google Scholar]
  35. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst Appl Microbiol 14:197–202
    [Google Scholar]
  36. Ramaiah N., Chandramohan D. 1992; Densities, cellulases, alginates and pectin lyases of luminous and other heterotrophic bacteria associated with marine algae. Aquat Bot 44:71–81
    [Google Scholar]
  37. Reichenbach H. 1989; Genus I. Cytophaga Winogradsky 1929, 557AL, emend. In Bergey’s Manual of Systematic Bacteriology vol. 3 pp. 2015–2050 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams Wilkins;
    [Google Scholar]
  38. Reichenbach H. 1992; The order Cytophagales. In The Prokaryotes vol. 2 pp. 3631–3675 Edited by Balows J., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  39. Rheinheimer G. 1992 Aquatic Microbiology, 4th. edn, pp. 1–363 Chichester: John Wiley;
    [Google Scholar]
  40. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4406–425
    [Google Scholar]
  41. Shiba T., Taga N. 1980; Heterotrophic bacteria attached to seaweeds. J Exp Mar Biol Ecol 47:251–258
    [Google Scholar]
  42. Sparre A. 1984; The climate of Denmark. Summaries of observations from light vessels IV. Salinity A - means, extremes and frequency. Danish Meteorological Institute. Climatol Pap 11:1–232
    [Google Scholar]
  43. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 174:2193–2198
    [Google Scholar]
  44. Strunk O., Ludwig W. 1995; arb : a software environment for sequence data (retrievable from [email protected] muenchen.de). Lehrstuhl fur Mikrobiologie Technical University of Munich; Munich, Germany:
    [Google Scholar]
  45. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprint of bacterial genomes. Nucleic Acids Res 19:6823–6831
    [Google Scholar]
  46. Versalovic J., Schneider M., de Brunijn F. J., Lupski J. R. 1994; Genomic fingerprinting of bacteria using repetitive sequences-based polymerase chain reaction. Methods Mol Cell Biol 5:23–40
    [Google Scholar]
  47. Warming E. 1875; Om nogle ved Danmarks Kyster levende Bakterier. Videns Medd naturhist For Kjdbenhavn 20-28:307–420
    [Google Scholar]
  48. Winogradsky S. 1929; Etudes sur la microbiologie du sol. Ann Inst Pasteur 43:549–633
    [Google Scholar]
  49. ZoBell C. E. 1946; Marine Microbiology. A Monograph on Hydrobacteriology. pp. 1–240 Waltham, MA: Chronica Botanica;
    [Google Scholar]
  50. ZoBell C. E., Upham H. C. 1944; A list of marine bacteria including descriptions of sixty new species. Bull Scripps Inst Oceanogr 5:239–292
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-3-1231
Loading
/content/journal/ijsem/10.1099/00207713-49-3-1231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error