Pseudomonas libanensis sp. nov., a new specie isolated from Lebanese spring waters Free

Abstract

The taxonomic position of eight fluorescent isolates, from two Lebanese spring waters, which were previously recognized by numerical analysis as members of a new subcluster (subcluster Vb) was examined. Excep for one strain, the new subcluster exhibited internal DNA hybridization values of 76-100%, and 9-53% hybridization was measured with the type or reference strains of other . The highest DNA binding value was found with (37-53%). The G+C content of the DNA of the type strain was 58 mol%. A comparison of 1322 nt of the 16S rRNA gene sequence of the strain representing subcluster Vb (CFML 96-1951) with the sequence of other strains of the genus revealed that strain CFML 96-195 was part of the ‘ intrageneric cluster’. On the basis of the results of phenotypic, DNA-DNA and phylogenetic analyses, a new sp. nov., is proposed for the seven strains of subcluster Vb. The type strain is CFML 96-195 and has been deposited in the Collection de I‘lnstitut Pasteur (Paris, France) as CIP 105460. The strains are phenotypically and genotypically homogeneous and can be differentiated from most other fluorescent species by several phenotypic features. Differentiation of and is based mainly on pyocyanin production; can be differentiated from (all biovars) by β-aminobutyrate assimilation. The clinical significance of is unknown.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-3-1091
1999-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/3/ijs-49-3-1091.html?itemId=/content/journal/ijsem/10.1099/00207713-49-3-1091&mimeType=html&fmt=ahah

References

  1. Barrett E. L., Solanes R. E., Tang J. S., Palleroni N. J. 1986; Pseudomonas fluorescens biovar V: its resolution into distinct component groups and the relationship of these groups to other P. fluorescens biovars, to P. putida, and to psychrophilic pseudomonads associated with food spoilage. J Gen Microbiol 132:2709–2721
    [Google Scholar]
  2. Beji A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli. Anal Biochem 161:18–23
    [Google Scholar]
  3. Boivin-Jahns V., Bianchi A., Ruimy R., Daumas S., Christen R. 1995; Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. ApplEnviron Microbiol 61:3400–3406
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  5. Champion A. B., Barrett E. L., Palleroni N. J., Soderberg R. L., Kunisawa R., Contopoulou R., Wilson A. C., Doudoroff M. 1980; Evolution in Pseudomonas fluorescens. J Gen Microbiol 120:485–511
    [Google Scholar]
  6. Coroler L., Elomari M., Hoste B., Gillis M., Izard D., Leclerc H. 1996; Pseudomonas rhodesiae sp. nov., a new species isolated from natural mineral waters. Syst Appl Microbiol 19:600–607
    [Google Scholar]
  7. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a singlestrand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and hetero-duplexes. J Bacteriol 115:904–911
    [Google Scholar]
  8. Dabboussi F., Hamze M., Elomari M., Verhille S., Baida N., Izard D., Leclerc H. 1998; A numerical study of fluorescent Pseudomonas strains isolated from three Lebanese spring waters. J Eur Hydrol 28:325–338
    [Google Scholar]
  9. De Ley J. 1970; Re-examination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:737–754
    [Google Scholar]
  10. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509
    [Google Scholar]
  11. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas David and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int J Syst Bacteriol 35:443–453
    [Google Scholar]
  12. Edwards U., Rogall T., Blocker H., Emde M., B&ttger E. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853
    [Google Scholar]
  13. Elomari M., Coroler L., Hoste B., Gillis M., Izard D., Leclerc H. 1996; DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 46:1138–1144
    [Google Scholar]
  14. Elomari M., Coroler L., Verhille S., Izard D., Leclerc H. 1997; Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 47:846–852
    [Google Scholar]
  15. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  16. Gillis M., Van Van T., Bardin R. 7 other authors 1995; Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov., for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289
    [Google Scholar]
  17. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330
    [Google Scholar]
  18. Hoeniger J. F. M. 1965; Development of flagella by Proteus mirabilis. J Gen Microbiol 40:29–33
    [Google Scholar]
  19. Kersters K., Ludwig W., Vancanneyt M., De Vos P., Gillis M., Schleifer K. H. 1996; Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19:465–477
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  21. Lane D. J. 1991; 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics p. 115 Edited by Stac-kebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  22. Leclerc H., Guillot E. 1992; Etude de la flore bacterienne de deux sources d’eaux minerales naturelles; caracterisation par les profils de restriction des genes codant pour les ARN ribo-somaux; specificite et stabilite biologique. Bull Acad Natl Med 176:1491–1504
    [Google Scholar]
  23. Molin G., Ternstrtim A. 1982; Numerical taxonomy of the psychrophilic pseudomonads. J Gen Microbiol 128:1249–1264
    [Google Scholar]
  24. Moore E. R. B., Mau M., Arnsceidt A., BOttger E. C., Hutson R. A., Collins M., D„ Van De Peer, Y„ De Wachter R., Timmis K. N. 1996; The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492
    [Google Scholar]
  25. Palleroni N.J. 1984; Genus I. Pseudomonas Migula 1894, 237AL (Nom. cons. Opin. 5, Jud. Comm. 1952, 237). In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams Wilkins;
    [Google Scholar]
  26. Palleroni N. J., Bradbury J. F. 1993; Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al., 1983. Int J Syst Bacteriol 43:606–609
    [Google Scholar]
  27. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Segers P., Vancanneyt M., Pot B., Torek, U„ Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb, nov., and Brevundimonas vesicularis comb, nov., respectively. Int J Syst Bacteriol 44:499–510
    [Google Scholar]
  30. Swings J., De Vos P., Van Den Mooter M., De Ley J. 1983; Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb, nov. Int J Syst Bacteriol 30:547–556
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  32. Urakami T., Ito-Yoshida, G, Araki H., Kijima T., Suzuki K. I., Komagata K. 1994; Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp., and description of Burkholderia vandii sp. nov. Int J Syst Bacteriol 44:235–245
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  34. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb, nov., (formerly Pseudomonas flava), Hydrogenophaga palleroni, (formerly Pseudomonas palleroni), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and ‘ Pseudomonas carboxydoflava ’), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333
    [Google Scholar]
  35. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, EF group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb, nov., Acidovorax delafieldii comb, nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 40:384–398
    [Google Scholar]
  36. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb, nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450
    [Google Scholar]
  37. Willems A., Goor M., Thielemans S., Gillis M., Kersters K. 1992; Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb, nov., Acidovorax avenae subsp. citrulliAcidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol 42:107–119
    [Google Scholar]
  38. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  39. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275
    [Google Scholar]
  40. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y. 1995; Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb, nov., Ralstonia sola-nacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 39:897–904
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-3-1091
Loading
/content/journal/ijsem/10.1099/00207713-49-3-1091
Loading

Data & Media loading...

Most cited Most Cited RSS feed