1887

Abstract

A sulfate-reducing bacterium, designated strain lac, was isolated from surface-sterilized roots of the benthic macrophyte . Cells were motile by means of a single polar flagellum. Strain lacutilized lactate, pyruvate, malate, ethanol, -alanine, fumarate, choline and fructose with sulfate as electron acceptor. In addition, fumarate, pyruvate and fructose were also degraded without an external electron acceptor. Sulfate could be substituted with thiosulfate, sulfite and elemental sulfur. Optimal growth was observed between 32·5 and 34·5 °C, at an NaCl concentration of 0·2 M and in a pH range between 6·8 and 7·3. The G+C content of the DNA was 42·7±0·2 mol%. Desulfoviridin and catalase were present. Strain laccontained c-type cytochromes. Comparative 16S rRNA gene sequence analysis and the fatty acid pattern grouped this isolate into the genus . However, strain lacdiffers from all other described species on the bases of its 16S rRNA gene sequence, the G+C content, its cellular lipid pattern and the utilization pattern of substrates. These characteristics establish strain lac(= DSM 11974) as a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-859
1999-04-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-859.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-859&mimeType=html&fmt=ahah

References

  1. Bak F., Pfennig N. 1991; Sulfate-reducing bacteria in littoral sediment of Lake Constance. FEMS Microbiol Ecol 85:43–52
    [Google Scholar]
  2. Beerens H., Romond C. 1977; Sulfate-reducing anaerobic bacteria from human feces. Am J Clin Nutr 30:1770–1776
    [Google Scholar]
  3. Blaabjerg V., Finster K. 1998; Sulphate reduction associated with roots and rhizomes of the marine macrophyte Zostera marina. Aquat Microb Ecol 15:311–314
    [Google Scholar]
  4. Coates J. D., Lonergan D. J., Philips E. J. P., Jenter H., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164:406–413
    [Google Scholar]
  5. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfo-tomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Leeuwenhoek 54:165–178
    [Google Scholar]
  6. Finster K., Liesack W., Thamdrup B. 1998; Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfo-exigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64:119–125
    [Google Scholar]
  7. Gibson G. R., Macfariane G. T., Cummings J. H. 1988; Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methano-genesis in the large gut. J Appl Bacteriol 65:103–111
    [Google Scholar]
  8. Hansen T. A. 1993; Carbon metabolism of sulfate-reducing bacteria. The Sulfate-Reducing Bacteria: Contemporary Perspectives21–40 Odom J. M., Singleton R. Jr. New York: Springer;
    [Google Scholar]
  9. Howard B. H., Hungate R. E. 1976; Desulfovibrio of the sheep rumen. Appl Environ Microbiol 32:598–602
    [Google Scholar]
  10. Ingvorsen K., Jørgensen B. B. 1984; Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol 139:61–66
    [Google Scholar]
  11. Isaksen M. F., Finster K. 1996; Sulphate reduction in the root zone of the seagrass Zostera noltii on the tidal flats of a coastal lagoon (Arcachon, France). Mar Ecol Prog Ser 137:187–194
    [Google Scholar]
  12. Jørgensen B. B., Bak F. 1991; Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microbiol 57:847–856
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. Mammalian Protein Metabolism21–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Klemps R., Cypionka H., Widdel F., Pfennig N. 1985; Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208
    [Google Scholar]
  15. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  17. Ollivier B., Cord-Ruwisch R., Hatchikian E. C., Garcia J. L. 1988; Characterization oi Desulfovibrio fructosov or ans sp. nov. Arch Microbiol 149:447–450
    [Google Scholar]
  18. Oude Elferink S. J. W. H., Maas R. N., Harmsen H. J. M., Stams A. J. M. 1995; Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch Microbiol 164:119–124
    [Google Scholar]
  19. Rodriguez-Tomé P., Stoehr P. J., Cameron G. N., Flores T. P. 1996; The European Bioinformatics Institute (EBI) databases. Nucleic Acids Res 24:6–12
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method : a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Strunk O., Ludwig W. 1996 arb a software environment for sequence data Technische Universitàt Munchen; Munich, Germany:
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  23. Taylor J., Parkes R. J. 1985; Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J Gen Microbiol 131:631–642
    [Google Scholar]
  24. Trinkerl M., Breunig A., Schauder R., Konig H. 1990; Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. Syst Appl Microbiol 13:372–377
    [Google Scholar]
  25. Vainshtein M., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol 15:554–566
    [Google Scholar]
  26. Van de Peer Y., Nicolai S., De Rijk P., De Wachter R. 1996; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 1A:86–91
    [Google Scholar]
  27. Visuvanathan S., Moss M. T., Stanford J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10:59–64
    [Google Scholar]
  28. Widdel F. 1988; Microbiology and ecology of sulfate- and sulfur-reducing bacteria. Biology of Anaerobic Microorganisms477–481 Zehnder A. J. B. New York: John Wiley;
    [Google Scholar]
  29. Widdel F., Bak F. 1992 The Prokaryotes, 2.3352–3378 Balows A., Triiper H. G., Dworkin M., Harper W., Schleifer K.-H. New York: Springer Verlag;
    [Google Scholar]
  30. Widdel F., Pfennig N. 1984; Dissimilatory sulfate- or sulphur-reducing bacteria. Bergey's Manual of Systematic Bacteriology 1663–679 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  31. Zellner G., Messner P., Kneifel H., Winter J. 1989; Desulfovibrio simplex sp. nov., a sulfate-reducing bacterium from a sour whey digester. Arch Microbiol 152:329–334
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-49-2-859
Loading
/content/journal/ijsem/10.1099/00207713-49-2-859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error