1887

Abstract

The genus has been studied since 1931 with regard to a variety of topics of relevance to both applied and environmental microbiology. Recent years have seen the introduction of a large number of new , necessitating a coordinated review of the genus. In this work, the phylogenetic relationships among known shewanellae were examined using a battery of morphological, physiological, molecular and chemotaxonomic characterizations. This polyphasic taxonomy takes into account all available phenotypic and genotypic data and integrates them into a consensus classification. Based on information generated from this study and obtained from the literature, a scheme for the identification of species has been compiled. Key phenotypic characteristics were sulfur reduction and halophilicity. Fatty acid and quinone profiling were used to impart an additional layer of information. Molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in some cases. As a result, DNA-DNA hybridization and sequence analyses of a more rapidly evolving molecule ( gene) were performed. Species-specific PCR probes were designed for the gene and used for the rapid screening of closely related strains. With this polyphasic approach, in addition to the ten described species, two new species, and ‘’, were recognized; sp. nov. is described here for the first time.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-705
1999-04-01
2022-06-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-705.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-705&mimeType=html&fmt=ahah

References

  1. Aguirre A. A., Balazas G. H., Zimmerman B., Spraker T. R. 1994; Evaluation of Hawaiian green turtles (Chelonia my das) for potential pathogens associated with fibropapillomas. J WildlDis 308–15
    [Google Scholar]
  2. Akagawa-Matsushita M., Itoh T., Katayama Y., Kuraishi H., Yamasato K. 1992; Isoprenoid quinone composition of some marine Alteromonas Marinomonas Deleya Pseudomonas and Shewanella species. J Gen Microbiol 138:2275–2281
    [Google Scholar]
  3. Baumann P., Gauthier M. J., Baumann L. 1984; Genus Alter omonas Baumann, Baumann, Mandel and Allen, 1972, 418. In Bergey’s Manual of Systematic Bacteriology243–352 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov., and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosa-pentaenoic acid (20:5co3) and grow anaerobically by dis-similatory Fe(III) reduction. IntJSyst Bacteriol 4 1:1040–1047
    [Google Scholar]
  5. Brink A. J., van Straten A., van Rensburg A. J. 1995; Shewanella (Pseudomonas) putrefaciens bacteremia. Clin Infect Dis 20:1327–1332
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  7. Cole R. M., Popkin T. J. 1981; Electron microscopy. In Manual of Methods for General Bacteriology34–51 Gerhardt P., Murray R. G. E., Costilaw R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Coyne V. E., Pillidge C. J., Sledjeski D. D., Hori H., Ortiz-Conde B. A., Muir D. G., Weiner R. M., Colwell R. R. 1989; Re- classification of Alteromonas colwelliana to the genus Shewanella by DNA-DNA hybridization, serology and 5S ribosomal RNA sequence data. Syst Appl Microbiol 12:275–279
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridisation from renaturation rates. EurJ Biochem 12:133–142
    [Google Scholar]
  10. Derby H. A., Hammer B. W. 1931; Bacteriology of butter. IV. Bacteriological studies of surface taint butter. Iowa Agric Exp Stn Res Bull 145:387–16
    [Google Scholar]
  11. Edgell D. R., Doolittle W. F. 1997; Archaea and the origin(s) of DNA replicon proteins. Cell 89:995–998
    [Google Scholar]
  12. Escara J. F., 8c Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  13. Farmer J. J. III 1992; The family Vibrionaceae. In The Prokaryotes2939–2951 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  14. Felsenstein J. 1990; phylip manual version 3.3. University Herbarium. University of California; Berkeley, CA, USA:
    [Google Scholar]
  15. Fonnesbech-Vogel B., Jorgensen K., Christensen H., Olsen J. E., Gram L. 1997; Differentiation ofShewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis. Appl Environ Microbiol 63:2189–2199
    [Google Scholar]
  16. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  17. Gilmour D. 1990; Halotolerant and halophilic microorganisms. In Microbiology of Extreme Environments147–177 C. Edwards. Milton Keynes: Open University Press;
    [Google Scholar]
  18. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol A184–192
    [Google Scholar]
  19. Jahnke K.-D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  20. Jensen M. J., Tebo B. M., Baumann P., Mandel M., Nealson K. H. 1980; Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3:311–315
    [Google Scholar]
  21. Johnson J. L. 1981; Genetic characterization. In Manual of Methods for General Bacteriology450–472 Gerhardt P., Murray R. G. E., Costilaw R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips GB. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Jorgensen B. R., Huß H. H. 1989; Growth and activity of Shewanella putrefaciens isolated from spoiling fish. Int J Food Microbiol 951–62
    [Google Scholar]
  23. Kostka J. E., Stucki J. W., Nealson K. H., Wu J. 1996; Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays and Clay Minerals 44:522–529
    [Google Scholar]
  24. Lee J. V., Gibson D. M., 8s Shewan J. M. 1977; A numerical taxonomic study of some Pseudomonas-like marine bacteria. J Gen Microbiol 98:439–151
    [Google Scholar]
  25. Leonardo M. R., Moser D. P., Barbieri E., Brantner C. A., Paster B. J., Stackebrandt E., Nealson K. H. 1999; Shewanella pealeana sp. nov., a member of a microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol (in press)
    [Google Scholar]
  26. Lies D. P., Moser D. P., Sano H., Nishijima M., Sakai M. 1996; Types and levels of isoprenoid quinones synthesized under various growth conditions for strains of Shewanella putre-faciens. In Abstracts of the 96th General Meeting of the American Society for Microbiology547 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Lovely D. R., Phillips E. J. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  28. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae and recommendation for two new genera, Liston-ella and Shewanella. Syst Appl Microbiol 6:171–182
    [Google Scholar]
  29. Makemson J. C., Fulayfil N. R., Landry W., Van Ert L. M., Wimpee C. F., Widder E. A., Case J. F. 1997; Shewanella woodyi (sp. nov.), a new exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  31. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Moser D. P., Nealson K. H. 1996; Growth of the facultative anaerobe Shewanellaputrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62:2100–2105
    [Google Scholar]
  33. Moule A. L., Wilkinson S. G. 1987; Polar lipids, fatty acids, and isoprenoid quinones of Alteromonas putrefaciens {Shewanella putrefaciens). Syst Appl Microbiol 9:192–198
    [Google Scholar]
  34. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321
    [Google Scholar]
  35. Nealson K. H., Saffarini D. 1994; Iron and manganese anaerobic respiration. Annu Rev Microbiol 48:311–343
    [Google Scholar]
  36. Nealson K. H., Myers C. R., Wimpee B. B. 1991; Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep Sea Res 38:S907–S920
    [Google Scholar]
  37. Nichols D. S., Nichols P. D., Russell N. J., Davies N. W., McMeekin T. A. 1997; Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Biochim Biophys Ada 1347:164–176
    [Google Scholar]
  38. Nishijima M., Araki-Sakai M., Sano H. 1997; Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122
    [Google Scholar]
  39. Nozue H., Hayashi T., Hashimoto Y., Ezaki T., Hamazaki K., Ohwada K., 8c Terawaki Y. 1992; Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S alga Simidu et al 1990 335. Int J Syst Bacteriol 42:628–634
    [Google Scholar]
  40. Ochman H., Wilson A. C. 1987; Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86
    [Google Scholar]
  41. Owen R. J., Legros R. M., Lapage S. P. 1978; Base composition, size, and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138
    [Google Scholar]
  42. Perry K. A., Kostka J. E., Luther G. W. III, Nealson K. H. 1993; Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science 259:801–803
    [Google Scholar]
  43. Petrovskis E. A., Vogel T. M., Adriaens P. 1994; Effects of electron acceptors and donors on transformation of tetra-chloromethane by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 121:357–364
    [Google Scholar]
  44. Ringelberg D. B., Townsend G. T., De Weerd K. A., Suflita J. M., White D. C. 1994; Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysaccharide branched-long-chain hydroxy fatty acids. FEMS Microbiol Ecol 14:9–18
    [Google Scholar]
  45. Reid G. A., Gordon E. H. J. 1999; Phylogeny of marine and freshwater Shewanella: reclassification of Shewanella putrefaciens NCIMB 400 as Shewanella frigidimarina. Int J Syst Bacteriol 49:189–191
    [Google Scholar]
  46. Ruimy R., Breittmayer V., Elbaze P., Lafay B., Boussemart O., Gauthier M., Christen R. 1994; Phylogenic analysis and assessment of the genera Vibrio Photobacterium Aeromonas and Plesiomonas deduced from small subunit rRNA sequences. Int J Syst Bacteriol 44:416–426
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Semple K. M., Westlake D. W. S. 1987; Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 35:925–931
    [Google Scholar]
  49. Shewan J. M. 1977 The bacteriology of fresh and spoiling fish and the biochemical changes induced by bacterial actionIn Proceedings of the Conference on Handling, Processing and Marketing of Tropical Fish51–66London: Tropical Products Institute
    [Google Scholar]
  50. Shewan J. M., Hobbs G., Hodgkiss W. 1960; A determinative scheme for the identification of certain genera of Gram-negative bacteria with special reference to Pseudomonadaceae. J Appl Bacteriol 23:379–390
    [Google Scholar]
  51. Simidu U., Kita-Tsukamoto K., Yasumoto T., Yotsu M. 1990; Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40:331–336
    [Google Scholar]
  52. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  53. Stenstrom l.-M., 8c Molin G. 1990; Classification of spoilage flora of fish, with special reference to Shewanella putrefaciens. J Appl Bacteriol 68:601–618
    [Google Scholar]
  54. Strunk O., Ludwig W. 1995; arb - a software environment for sequence data. Department of Microbiology, Technical University of Munich; Munich, Germany:
    [Google Scholar]
  55. Swofford D. 1990; paup: phylogenetic analysis using parsimony, version 3.0. Computer program distributed by the Illinois Natural History Survey; Champaign, IL, USA:
    [Google Scholar]
  56. Triiper H. G., de’ Clari L. 1997; Taxonomic note: Necessary correction of specific epithets formed as substantives (nouns) ‘in apposition’. Int J Syst Bacteriol 47:908–909
    [Google Scholar]
  57. Turnbull P. C. B., 8i Kramer J. M. 1991; Bacillus. In Manual of Clinical Microbiology, 5.296–303 Balows A., Hausler W. J., Herrmann K. L., Isenberg H. D., Shadomy H. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  58. Venkateswaran K., Nakano H., Okabe T., Takayama K., Matsuda O., Hashimoto H. 1989; Occurrence and distribution of Vibrio spp., Listonella spp., and Clostridium botulinum in the Seto Inland Sea of Japan. Appl Environ Microbiol 55:559–567
    [Google Scholar]
  59. Venkateswaran K., Dohmoto N., Harayama S. 1998a; Cloning and nucleotide sequence of gyrB gene of Vibrio parahaemolyticus and its application in detection of the pathogen in shrimp. Appl Environ Microbiol 64:681–687
    [Google Scholar]
  60. Venkateswaran K., Dollhopf M. E., Aller R., Stackebrandt E., Nealson K. H. 1998b; Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48:965–972
    [Google Scholar]
  61. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  62. Weiner R. M., Coyne V. E., Brayton P., West P. A., Raiken S. F. 1988; Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int J Syst Bacteriol 38:240–244
    [Google Scholar]
  63. West P. A., Colwell R. R. 1984; Identification and classification overview. In Vibrios in the Environment285–363 Colwell R. R. New York: Wiley;
    [Google Scholar]
  64. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  65. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseud-omonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  66. Yamamoto S., 8c Harayama S. 1996; Phylogenetic analysis of Acinetobacter strains on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Appl Environ Microbiol 46:506–511
    [Google Scholar]
  67. Ziemke F., Hofle M. G., Lalucat J., Rossello-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-705
Loading
/content/journal/ijsem/10.1099/00207713-49-2-705
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error