1887

Abstract

A sulfate-reducing bacterium, strain HDv(T = type strain), was isolated from an anoxic ricefield soil. Cells were Gram-negative, non-sporulating curved rods motile by means of a single polar flagellum. Cytochrome and desulfoviridin were present. In the presence of sulfate, glycerol, 1,2- and 1,3-propanediol, dihydroxyacetone, pyruvate, lactate, fumarate, maleate, malate and succinate were incompletely oxidized mainly to acetate. Sulfite, thiosulfate, elemental sulfur, fumarate, maleate and malate were utilized as alternative electron acceptors. In the absence of added electron acceptors, pyruvate, fumarate, maleate, malate and dihydroxyacetone were fermented. The DNA base composition was 67 mol% G+C. The phylogenetic, phenotypic and physiological characteristics of strain HDvindicate that it is a new species of the genus , for which the name sp. nov is proposed; the type strain is HDv(= DSM 6830). Phylogenetic analysis confirmed that was a distinct species supporting the previously published phenotypic data.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-639
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-639.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-639&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gond-wanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269
    [Google Scholar]
  2. Felsenstein J. 1993; phylip (Phylogenetic Inference Package) version 3.51c. Distributed by the author. Department of Genetics University of Washington; Seattle, USA.:
    [Google Scholar]
  3. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  4. Kremer D. R., Hansen T. A. 1987; Glycerol and dihydroxy-acetone dissimilation in Desulfovibrio strains. Arch Microbiol 147:249–256
    [Google Scholar]
  5. Lee J. P., Peck H. D. 1971; Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin. Biochem Biophys Res Commun 45:583–589
    [Google Scholar]
  6. Magot M., Ravot G., Campaignolle X., Ollivier B., Patel B. K. C., Fardeau M.-L, Thomas P., Crolet J.-L, Garcia J.-L. 1997; Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824
    [Google Scholar]
  7. Maidak B. L, Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The ribosomal database project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  8. Nanninga H. J., Gottschal J. C. 1987; Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appi Environ Microbiol 51:572–579
    [Google Scholar]
  9. Ollivier B., Cord-Ruwisch R., Hatchikian E. C., Garcia J.-L. 1988; Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149:447–450
    [Google Scholar]
  10. Oppenberg B., Schink B. 1990; Anaerobic degradation of 1,3-propanediol by sulfate-reducing bacteria. Anton Leeuwen-hoek 57:205–213
    [Google Scholar]
  11. Ouattara A. S., Cuzin N., Traore A. S., Garcia J.-L. 1992; Anaerobic degradation of 1,2-propanediol by a new Desulfovibrio strain and D alcoholovorans . Arch Microbiol 158:218–225
    [Google Scholar]
  12. Pfennig N., Widdel F., Triiper H. G. 1981; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes926–940 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin, Heidelberg, New York: Springer;
    [Google Scholar]
  13. Postgate J. R. 1956; Cytochrome c3 and desulphoviridin pigments of the anaerobic Desulphovibrio desulphuricans . J Gen Microbiol 14:545–572
    [Google Scholar]
  14. Qatibi A. I., Niviere V., Garcia J.-L. 1991; Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2- and 1,3-propanediol. Arch Microbiol 155:143–148
    [Google Scholar]
  15. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol Lett 113:81–86
    [Google Scholar]
  16. Rozanova E. P., Nazina T. N., Galushko A. S. 1988; Isolation of a new genus of sulfate-reducing bacterium and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov. sp. nov. Microbiology (English translation of Mikro-biologiya) 57:514–520
    [Google Scholar]
  17. Stams A. J. M., Hansen T. A., Skyring G. W. 1985; Utilization of amino acids as energy substrates by two marine Desulfovibrio strains. FEMS Microbiol Ecol 31:11–15
    [Google Scholar]
  18. Tanaka K. 1990; Several new substrates for Desulfovibrio vulgaris strain Marburg and a spontaneous mutant from it. Arch Microbiol 155:18–21
    [Google Scholar]
  19. Trinkerl M., Breunig A., Schauder R., Kònig H. 1990; Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hingut of a termite. Syst Appi Microbiol 13:372–377
    [Google Scholar]
  20. Widdel F. 1988; Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In Biology of Anaerobic Microorganisms469–585 Zehnder A. J. B. New York: Wiley;
    [Google Scholar]
  21. Winker S., Woese C. R. 1991; A definition of the domain Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-639
Loading
/content/journal/ijsem/10.1099/00207713-49-2-639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error