1887

Abstract

Analysis of PCR products of 16S rDNA of 680 isolates from Mediterranean Sea mesocosm experiments with taxon-specific 16S rDNA oligonucleotides revealed that 262 isolates belonged to the α subclass of the class . Partial 16S rDNA sequence analysis of selected isolates and oligonucleotide probing with a 16S rDNA probe affiliated 33 strains to the genus . Analysis of the Haelll digest pattern of 16S rDNA revealed the presence of two groups; while 30 strains showed a pattern identical with that obtained for DSM 10014, a second group of three strains had a unique pattern that was different from that of the type strain. Five isolates of group 1 and one isolates of group 2, strain CH-B427, were selected for detailed taxonomic analysis. All six isolates closely resembled the type strain DSM 10014in physiological reactions. However, strain CH-B427differed quantitatively in the composition of fatty acids from DSM 10014and showed only 98·2% 16S rDNA sequence similarity with strain DSM 10014. DNA-DNA reassociation value obtained for strains DSM 10014and CH-B427revealed 46 % similarity. Based on the results of DNA-DNA reassociation and discrete differences in the nucleotide composition of 16S rDNA, a new species of the genus is proposed, designated sp. nov., the type strain being strain CH-B427(= DSM 12244).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-513
1999-04-01
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-513.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-513&mimeType=html&fmt=ahah

References

  1. Bowman J., McCammon S. A., Brown M. V., Nichols D. S., McMeekin T. A. 1997; Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:
    [Google Scholar]
  2. Benlloch S., Rodriguez-Valera F., Martinez-Murcia A. J. 1995; Bacterial diversity in two coastal lagoons deduced from 16S rDNA PCR amplification and partial sequencing. FEMS Microbiol Ecol 18:267–280
    [Google Scholar]
  3. Brosius J., Palmer M. L, Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  5. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  6. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  7. Felsenstein J. 1993 phylip (phylogenetic inference package) version 3.5.1. Department of Genetics; University of Washington, Seattle, USA:
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Gonzales J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Sagittula stellata gen. nov., sp.nov., a lignin-transforming bacterium from a coastal enviroment. Int J Syst Bacteriol 47:773–780
    [Google Scholar]
  10. Gosink J. J., Herwig R. P., Staley J. T. 1997; Octadecabacter arcticus gen. nov., spec. nov. and O. antarcticus sp. nov., nonpigmented, psychrophilic gas vacuolated bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365
    [Google Scholar]
  11. Heimbrook M. E., Wong W. L. L., Campbell G. 1989; Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  13. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro. H. N. New York: Academic Press;
    [Google Scholar]
  15. Kuykendall L. D., Roy M. A., O′Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361
    [Google Scholar]
  16. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics125–175 Stackebrandt E., Goodfellow. M. Chichester: Wiley;
    [Google Scholar]
  17. Maidak B. L, Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111
    [Google Scholar]
  18. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. 1992; Phylogenetic oligonucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  20. Miller L. T. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  21. Pukall R., Brambilla E., Stackebrandt E. 1998; Automated fragment length analysis of fluorescently-labeled 16S rDNA after digestion with 4-base cutting restriction enzymes. J Microbiol Methods 32:55–64
    [Google Scholar]
  22. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:
    [Google Scholar]
  23. Schlesner H. 1994; The development of media suitable for the microorganisms morphologically resembling Planctomyces ssp., Pirellula ssp., and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:
    [Google Scholar]
  24. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov., sp. nov. - a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology (English translation of Mikrobiologiyd) 64:295–305
    [Google Scholar]
  25. Stackebrandt E., Lebaron P., Troussilier M., Courties C., Servais P., Vives-Rego J., Muyzer G., Pukall R., Lehnberg B., BuntefuB D., Päuker O., Ulrichs G., Bernard L., Guindulain T., Schafer H. 1998; Assessment of changes of diversity among Mediterranean prokaryotes subjected to eutrophying conditions. In Third European Marine Science and Technology Conference764–777 Barthel K.-G., Barth H., Bohle-Carbonell M., Fragakis C., Lipiatou E., Martin P., Oilier G., Weydert. M. Brussels: European Commission;
    [Google Scholar]
  26. Suzuki M. T., Rappe M. S., Haimberger Z. W., Winfield H., Adair N., Strobel J., Giovannoni S. 1997; Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-513
Loading
/content/journal/ijsem/10.1099/00207713-49-2-513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error