1887

Abstract

Several strains of moderately halophilic and mesophilic bacteria were isolated at the head of an oil-producing well on an offshore platform in southern Vietnam. Cells were Gram-negative, non-spore-forming, rod-shaped and motile by means of a polar f lagellum. Growth occurred at NaCl concentrations between 0 and 20%; the optimum was 5% NaCl. One strain, which was designated VT8, could degrade n-hexadecane, pristane and some crude oil components. It grew anaerobically in the presence of nitrate on succinate, citrate or acetate, but not on glucose. Several organic acids and amino acids were utilized as sole carbon and energy sources. The major components of its cellular fatty acids were C 3-OH, C 9c, C and C 9c. The DNA G+C content was 55·7 mol%. 16S rDNA sequence analysis indicated that strain VT8 was closely related to sp. strain CAB (99·8% similarity) and (99·4% similarity). Its antibiotic resistance, isoprenoid quinones and fatty acids were similar to those of and However, the whole-cell protein pattern of VT8 differed from that of other halophilic marine isolates, including DNA-DNA hybridization indicated that the level of relatedness to was 65% and that to was 75 %. Further differences were apparent in Fourier-transformed IR spectra of cells and lipopolysaccharide composition. It is proposed that VT8 should be the type strain of a new species and should be named may have been misclassified, as suggested previously, and may also belong to the genus

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-367
1999-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-367.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-367&mimeType=html&fmt=ahah

References

  1. Adkins J. P., Madigan M. T., Mandelco L., Woese C. R., Tanner R. S. 1993; Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 43:514–520
    [Google Scholar]
  2. American Petroleum Institute Research Publication 38 1975; Recommended Practice for Biological Analysis of Subsurface Injection Waters. , 3.1–7 Dallas, TX: American Petroleum Institute;
  3. Balkwill D. L., Drake G. R., Reeves R. H. 7 other authors 1997; Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov. and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201
    [Google Scholar]
  4. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429
    [Google Scholar]
  5. Bernard F. P., Connan J., Magot M. 1992; Indigenous microorganisms in connate water of many oil fields : a new tool in exploration and production techniques. 67th Annual Technical Conference and Exhibition of Society of Petroleum EngineersWashington, DC,467–476 Richardson, TX: Society of Petroleum Engineers;
    [Google Scholar]
  6. Bhupathiraju V. K., Mclnerney M. J., Knapp R. M. 1993; Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol J 11:19–34
    [Google Scholar]
  7. Cashion P., Hodler-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  8. Collins M. D. 1994; Isoprenoid quinones. Chemical Methods in Prokaryotic Systematics,265–309 Goodfellow M., O’Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  9. Dang P. N., Dang T. C. H., Lai T. H., Stan-Lotter H. 1996; Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:
    [Google Scholar]
  10. De Ley J. 1992; The Proteobacteria : ribosomal RNA cistron similarities and bacterial taxonomy. The Prokaryotes. A Handbook on the Biology of Bacteria : Ecophysiology, Isolation, Identification, Applications, 2, 2.2111–2140 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridisation from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  12. Denner E. B. M., McGenity T. J., Busse H.-J., Wanner G., Grant W. D., Stan-Lotter H. 1994; Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780
    [Google Scholar]
  13. De Vos P., Van Landshoot A., Segers P. 9 other authors 1989; Genotypic relationships and taxonomic location of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid : ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 39:35–49
    [Google Scholar]
  14. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  15. Felsenstein J. 1993; phylip (Phylogeny Inference Package), version 3.5.1. Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  16. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576
    [Google Scholar]
  17. Helm D., Labischinski H., Schallehn G., Naumann D. 1991a; Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137:69–79
    [Google Scholar]
  18. Helm D., Labischinski H., Naumann D. 1991b; Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries : a stepwise correlation approach. J Microbiol Methods 14:127–142
    [Google Scholar]
  19. Humble M. W., King A., Philips I. 1977; API ZYM, a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30:275–277
    [Google Scholar]
  20. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  21. Jackman P. J. H. 1987; Microbial systematics based on electrophoretic whole-cell protein patterns. Methods in Microbiology, 19 Current Methods for Classification and Identification of Microorganisms, 209–225 Colwell R. R., Grigova R. London: Academic Press;
    [Google Scholar]
  22. Jahnke K.-D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD Syst 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. Mammalian Protein Metabolism, 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  24. Kersters K., De Ley J. 1980; Classification and identification of bacteria by electrophoresis of their proteins. Microbiological Classification and Identification,273–297 Goodfellow M., Board R. G. New York: Academic Press;
    [Google Scholar]
  25. Kita-Tsukamoto K., Oyaizu H., Nanba K., Simidu U. 1993; Phylogenetic relationship of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int J Syst Bacteriol 43:8–19
    [Google Scholar]
  26. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. Halophilic Bacteria, I109–140 Rodriguez-Valera F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  27. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361
    [Google Scholar]
  28. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:684–685
    [Google Scholar]
  29. Maidak B. L., Olsen G. J., Larsen N., McCaughey M. J., Woese C. R. 1996; The ribosomal database project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  31. Naumann D., Helm D., Labischinski H. 1991; Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82
    [Google Scholar]
  32. Palva E. T., Mäkelä P. H. 1980; Lipopolysaccharide heterogeneity in Salmonella typhimurium analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eur J Biochem 107:137–143
    [Google Scholar]
  33. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage : proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092
    [Google Scholar]
  34. Rontani J.-F., Gilewicz M. J., Michotey V. D., Zheng T. L., Bonin P. C., Bertrand J.-C. 1997; Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments. Appl Environ Microbiol 63:636–643
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  36. Seltmann G., Voigt W., Beer W. 1994; Application of physico-chemical typing methods for the epidemiological analysis of Salmonella enteritidis strains of phage type 25/17. Epidemiol Infect 113:411–424
    [Google Scholar]
  37. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. Manual of Methods for General Microbiology,607–654 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Stan-Lotter H., Sanderson K. E. 1981; Interactions of cations with membrane fractions of smooth and rough strains of Salmonella typhimurium and other Gram-negative bacteria. J Bacteriol 146:542–551
    [Google Scholar]
  39. Stan-Lotter H., Lang F. J. Jr, Hochstein L. I. 1989; Electrophoresis and isoelectric focusing of whole cell and membrane proteins from the extremely halophilic archaebacteria. Appl Theor Electrophor 1:147–153
    [Google Scholar]
  40. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  41. Tardy-Jacquenod C., Magot M., Laigret F., Kaghad M., Patel B. K., C, Guezennec J., Matheron R., Caumette P. 1996a; Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int J Syst Bacteriol 46:710–715
    [Google Scholar]
  42. Tardy-Jacquenod C., Caumette P., Matheron R., Lanau C., Arnauld O., Magot M. 1996b; Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42:259–266
    [Google Scholar]
  43. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202
    [Google Scholar]
  44. Vandamme P., Devriese L. A., Pot B., Kersters K., Melin P. 1997; Streptococcus difficile is a nonhemolytic group B, type lb streptococcus. Int J Syst Bacteriol 47:81–85
    [Google Scholar]
  45. Vandamme P., Torck U., Falsen E., Pot B., Goossens H., Kersters K. 1998; Whole-cell protein electrophoretic analysis of viridans streptococci: evidence for heterogeneity among Streptococcus mitis biovars. Int J Syst Bacteriol 48:117–125
    [Google Scholar]
  46. Vauterin L., Swings J., Kersters K. 1993; Protein selectrophoresis and classification. Handbook of New Bacterial Systematics,251–280 Goodfellow M., O’Donnell A. G. London: Academic Press;
    [Google Scholar]
  47. Visuvanathan S., Moss V. S., Stanford J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10:59–64
    [Google Scholar]
  48. Vreeland R. H., Martin E. L. 1980; Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata . Can J Microbiol 26:746–752
    [Google Scholar]
  49. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495
    [Google Scholar]
  50. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  51. ZoBell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
    [Google Scholar]
  52. Zumft W. G. 1992; The denitrifying prokaryotes. The Prokaryotes. A Handbook on the Biology of Bacteria: Eco-physiology, Isolation, Identification, Applications, 1, 2.554–582 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-367
Loading
/content/journal/ijsem/10.1099/00207713-49-2-367
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error