sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent Free

Abstract

A novel barophilic, hyperthermophilic, anaerobic sulfur-metabolizing archaeon, strain MP (T = type strain), was isolated from a hydrothermal vent site (Snakepit) on the Mid-Atlantic Ridge (depth, 3550 m). Enrichments and isolation were done under 40 MPa hydrostatic pressure at 95 °C. Strain MP was barophilic at 75,80,85,90,95 and 98 °C, and was an obligate barophile between 95 and 100 °C ( ). For growth above 95 °C, a pressure of 15·0-17·5 MPa was required. The strain grew at 48·95 °C under atmospheric pressure. The optimal temperature for growth was 85 °C at both high (40 MPa) and low (0·3 MPa) pressures. The growth rate was twofold higher at 85 °C under hydrostatic pressure compared to at low pressure. Strain MP cells were motile, coccoid, 0·8-2·0 μm in diameter and covered by a hexagonal S-layer lattice. The optimum pH and NaCl concentration for growth at low pressure were 7·0 and 20·30 g I, respectively. The new isolate was an obligate heterotroph and utilized yeast extract, beef extract and peptone for growth. Growth was optimal in the presence of elemental sulfur. Rifampicin and chloramphenicol inhibited growth. The core lipids consisted of a major archaeol and a complex lipid pattern consisting of a major phospholipid. The DNA G+C content was 37·1 mol%. Sequencing of the 16S rRNA gene revealed that strain MP belonged to the genus and it is proposed that this isolate should be designated as a new species,

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-351
1999-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-351.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-351&mimeType=html&fmt=ahah

References

  1. Antoine E., Guezennec J., Meunier J. R., Lesonguer F., Barbier G. 1995; Isolation and characterization of extremely thermophilic archaebacteria related to the genus Thermococcus from deep-sea hydrothermal Guaymas Basin. Curr Microbiol 31:186–192
    [Google Scholar]
  2. Balch W., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  3. Canganella F. W., Jones J., Gambacorta A., Antranikian G. 1997; Thermococcus guamasii sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas basin hydrothermal vent site. Arch Microbiol 167:233–238
    [Google Scholar]
  4. Charbonnier F., Erauso G., Barbeyron T., Prieur D., Forterre P. 1992; Evidence that a plasmid from a hyperthermophilic archaebacterium is relaxed at physiological temperatures. J Bacteriol 174:6103–6108
    [Google Scholar]
  5. Deming J. W., Baross J. A. 1993; Deep-sea smokers: windows to a subsurface biosphere?. Geochim Cosmocim Acta 57:3219–3229
    [Google Scholar]
  6. De Rosa M., Gambacorta A. 1994; Archaeal lipids. Chemical Methods in Prokaryotic Systematics,199–264 Goodfellow M., O’Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  7. De Rosa M., Gambacorta A., Nicolaus B., Chappe B., Albrecht P. 1983; Isoprenoid ethers, backbone of complex lipids of the archaebacterium Sulfolobus solfataricus . Biochim Biophys Acta 753:249–256
    [Google Scholar]
  8. De Rosa M., Gambacorta A., Trincone A., Basso A., Zillig W., Holz I. 1987; Lipids of Thermococcus celer, a sulfur-reducing archaebacterium : structure and biosynthesis. Syst Appl Microbiol 9:1–5
    [Google Scholar]
  9. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  10. Erauso G., Reysenbach A. L., Godfroy A., Meunier J. R., Crump B., Partensky F., Baross J. A., Marteinsson V., Barbier G., Pace N. R., Prieur D. 1993; Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349
    [Google Scholar]
  11. Erauso G., Prieur D., Godfroy A., Raguenes G. 1995; Plate cultivation technique for strictly anaerobic, thermophilic, sulfur-metabolizing Archaea. Archaea: a Laboratory Manual,25–29 Robb F. T. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:337–442
    [Google Scholar]
  13. Holden J. F., Baross J. 1995; Enhanced thermotolerance by hydrostatic pressure in the deep-sea hyperthermophile Pyrococcus strain ES4. FEMS Microbiol Ecol 18:27–34
    [Google Scholar]
  14. Huber R., Langworthy T. A., Konig H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333
    [Google Scholar]
  15. Huber R., Stöhr J., Honenhaus S., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1995; Thermococcus chitonophagus sp. nov., a novel, chitin-degrading hyperthermophilic archaeum from deep-sea hydrothermal environment. Arch Microbiol 164:255–264
    [Google Scholar]
  16. Jannasch H. W., Wirsen C. O. 1984; Variability of pressure adaptation in deep-sea bacteria. Arch Microbiol 139:281–288
    [Google Scholar]
  17. Jannasch H. W., Wirsen C. O., Molyneaux S. J., Langworthy T. A. 1992; Comparative physiological studies of hyperthermophilic archaea isolated from deep-sea hydrothermal vents. Appl Environ Microbiol 58:3472–3481
    [Google Scholar]
  18. Johnson J. L. 1994; Similarity analysis of DNAs. Methods for General and Molecular Bacteriology,655–682 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Keller M., Braun F.-J., Dirmeieir R., Hafenbradl D., Burggraf S., Rachel R., Stetter K. O. 1995; Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  21. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  22. Marie D., Vaulot D., Partensky F. 1996; Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl Environ Microbiol 62:1649–1655
    [Google Scholar]
  23. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  24. Marteinsson V. T., Watrin L., Prieur D., Caprais J. C., Raguénès G., Erauso G. 1995; Phenotypic characterization, DNA similarities, and protein profiles of twenty sulfur-metabolizing hyperthermophilic anaerobic Archaea isolated from hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 45:623–632
    [Google Scholar]
  25. Marteinsson V. T., Moulin P., Birrien J.-L., Gambacorta A., Vernet M., Prieur D. 1997; Physiological responses to stress conditions and barophilic behaviour of the hyperthermophilic vent archaeon Pyrococcus abyssi . Appl Environ Microbiol 93:1230–1236
    [Google Scholar]
  26. Miller J. F., Shah N. N., Nelson C. M., Ludlow J. M., Clark D. S. 1988; Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii . Appl Environ Microbiol 54:3039–3042
    [Google Scholar]
  27. Nelson C. M., Schuppenhauer M. R., Clark D. S. 1991; Effect of hyperbaric pressure on a deep-sea archaebacterium in stainless steel and glass-linked vessels. Appl Environ Microbiol 57:3576–3580
    [Google Scholar]
  28. Nelson C. M., Schuppenhauer M. R., Clark D. S. 1992; High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth. Appl Environ Microbiol 58:1789–1793
    [Google Scholar]
  29. Neuner A., Jannasch H. W., Belkin S., Stetter K. O. 1990; Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207
    [Google Scholar]
  30. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml : a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  31. Pledger R. J., Baross J. A. 1991; Preliminary description and nutritional characterization of a chemoorganotrophic archaebacterium growing of up to 110 °C isolated from a submarine hydrothermal vent environment. J Gen Microbiol 137:203–211
    [Google Scholar]
  32. Pledger R. J., Crump B. C., Baross J. A. 1994; A barophilic response by two hyperthermophilic hydrothermal vent archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperature by elevated pressure. FEMS Microbiol Ecol 14:233–242
    [Google Scholar]
  33. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., „ Rachel R., Stetter K. O. 1991; Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archael hyperthermophilic growing at 110 °C. Syst Appl Microbiol 14:245–253
    [Google Scholar]
  34. Popoff M. Y., Coynault C. 1980; Use of DEAE-cellulose filters in the S1 nuclease method for bacterial deoxyribonucleic acid hybridization. Ann Microbiol 131 A:151–155
    [Google Scholar]
  35. Prieur D., Erauso G., Jeanthon C. 1995; Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122
    [Google Scholar]
  36. Reysenbach A.-L., Deming J. W. 1991; Effects of hydrostatic pressure on growth of hyperthermophilic archaebacteria from Juan de fuca Ridge. Appl Environ Microbiol 57:1271–1274
    [Google Scholar]
  37. Reysenbach A.-L., Pace N. R. 1995; Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction (PCR). Archaea: a Laboratory Manual,101–105 Robb F. T. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Sleytr U. B., Messner P., Pum D. 1988; Analysis of crystalline bacterial surface layers by freeze-etching, metal-shadowing, negative staining and ultrathin sectioning. Methods Microbiol 20:29–60
    [Google Scholar]
  39. Sleytr U. B., Messner P., Pum D., Sara M. 1996; Crystalline Bacterial Cell Surface Proteins. Austin, TX: R. G. Landes;
    [Google Scholar]
  40. Trincone A., De Rosa M., Gambacorta A., Lanzotti V., Nicolaus B., Harris J. E., Grant W. D. 1988; A simple chromatographic procedure for the detection of cyclized archaebacterial glycerol-bisdiphytanyl-glycerol-tetraether core lipids. J Gen Microbiol 134:3159–3163
    [Google Scholar]
  41. Yayanos A. A. 1986; Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 83:9542–9546
    [Google Scholar]
  42. Zillig W., Holtz I., Klenk H. P., Trent J., Wunderl S., Janekovic D., Imsel E., Haas B. 1987; Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales . Syst Appl Microbiol 9:62–70
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-351
Loading
/content/journal/ijsem/10.1099/00207713-49-2-351
Loading

Data & Media loading...

Most cited Most Cited RSS feed