@article{mbs:/content/journal/ijsem/10.1099/00207713-49-1-67, author = "Angen, Øystein and Mutters, Reinier and Caugant, Dominique A. and Olsen, John E. and Bisgaard, Magne", title = "Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov.", journal= "International Journal of Systematic and Evolutionary Microbiology", year = "1999", volume = "49", number = "1", pages = "67-86", doi = "https://doi.org/10.1099/00207713-49-1-67", url = "https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-49-1-67", publisher = "Microbiology Society", issn = "1466-5034", type = "Journal Article", keywords = "Pasteurella haemolytica", keywords = "Mannheimia gen. nov.", keywords = "16s rRNA sequencing", keywords = "DNA–DNA hybridization", keywords = "polyphasic taxonomy", abstract = "The present paper presents the conclusions of a polyphasic investigation of the taxonomy of the trehalose-negative [Pasteurella] haemolytica complex. Clusters previously identified by ribotyping and multilocus enzyme electrophoresis (MEE) have been evaluated by 16S rRNA sequencing and DNA–DNA hybridizations. Results obtained by the different techniques were highly related and indicated that the [P.] haemolytica complex contains distinct genetic and phenotypic groups. At least seven species were outlined, five of which were named. We refrained in formal naming of more groups until additional strains are characterized. Five 16S rRNA clusters were identified corresponding to distinct lineages previously outlined by MEE. Within 16S rRNA cluster I two distinct genotypic groups have been outlined in addition to [P.] haemolytica sensu stricto (biogroup 1). Each of the clusters II, III, IV and V represent at least one new species. The investigations underline that [P.] haemolytica sensu stricto only contains strains that do not ferment l-arabinose even though they are referred to as ‘biotype A’ of [P.] haemolytica. The five 16S rRNA clusters identified had a common root relative to the other species within the family Pasteurellaceae, and the overall sequence similarity among these five clusters was higher than what is observed within the existing genera of the family. The allocation of the trehalose-negative [P.] haemolytica complex to a new genus seems to be indicated. Based on the polyphasic investigation performed a new genus Mannheimia is proposed for the trehalose-negative [P.] haemolytica complex. At the present stage two previously named species are transferred to this new genus and three new species are described. [P.] haemolytica is reclassified as Mannheimia haemolytica comb. nov., whereas Pasteurella granulomatis, Bisgaard taxon 20 and [P.] haemolytica biovar 3J are reclassified and combined in the species Mannheimia granulomatis comb. nov. Mannheimia glucosida sp. nov. corresponds to [P.] haemolytica biogroups 3A-3H and the β-glucosidase and meso-inositol-positive strains of [P.] haemolytica biogroup 9. All typable strains within M. glucosida belong to serotype 11. Mannheimia ruminalis sp. nov. consists of strains previously classified as Bisgaard taxon 18 and [P.] haemolytica biogroup 8D. Finally, Mannheimia varigena sp. nov. includes [P.] haemolytica biogroup 6 as well as Bisgaard taxon 15 and Bisgaard taxon 36. The type strains are NCTC 9380T (M. haemolytica), ATCC 49244T (M. granulomatis), CCUG 38457T = P925T (M. glucosida). CCUG 38470T = HPA92T (M. ruminalis) and CCUG 38462T = 177T (M. varigena).", }