sp. nov., a bacterium capable of degrading squalene Free

Abstract

The taxonomic status of sp. Y-11, which was described as a squalene-degrading bacterium, was investigated by chemotaxonomic and genetic methods. The strain possesses wall chemotype IV, MK-9(H) as the predominant menaquinone, mycolic acids, and straight-chain, saturated and monounsaturated fatty acids, with considerable amounts of tuberculostearic acid. The DNA G+C content is 67·5 mol%. 16S rRNA gene sequence analysis and quantitative DNA-DNA hybridization experiments provided strong evidence that strain Y-11represents a new species within the genus , for which the name sp. nov. is proposed. The type strain of is strain Y-11(= IFO 14764).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-223
1999-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-223.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-223&mimeType=html&fmt=ahah

References

  1. Bendinger B., Kroppenstedt R. M., Klatte S., Altendorf K. 1992; Chemotaxonomic differentiation of coryneform bacteria isolated from biofilters. Int J Syst Bacteriol 42:474–486
    [Google Scholar]
  2. Collins M. D. 1987a; Transfer of Arthrobacter variabilis (Müller) to the genus Corynebacterium, as Corynebacterium variabilis comb. nov. Int J Syst Bacteriol 37:287–288
    [Google Scholar]
  3. Collins M. D. 1987b; Transfer of Brevibacterium ammoniagenes (Cooke and Keith) to the genus Corynebacterium as Corynebacterium ammoniagenes comb. nov. Int J Syst Bacteriol 37:442–443
    [Google Scholar]
  4. Collins M. D., Cummins C. S. 1986; Genus Corynebacterium . In Bergey’s Manual of Systematic Bacteriology 21266–1283 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Collins M. D., Goodfellow M., Minnikin D. E. 1982; Fatty acid composition of some mycolic acid-containing coryneform bacteria. J Gen Microbiol 128:2503–2509
    [Google Scholar]
  6. Collins M. D., Burton R. A., Jones D. 1988; Corynebacterium amycolatum sp. nov., a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol Lett 49:349–352
    [Google Scholar]
  7. Collins M. D., Shimada J., Stackebrandt E. 1989; Phylogenetic evidence for the transfer of Caseobacter polymorphys (Crombach) to the genus Corynebacterium . Int J Syst Bacteriol 39:7–9
    [Google Scholar]
  8. Cowan S. T. 1974 Cowan and SteePs Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  9. Crombach W. H. J. 1978; Caseobacter polymorphus gen. nov., sp. nov., a coryneform bacterium from cheese. Int J Syst Bacteriol 28:354–366
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strain. Int J Syst Bacteriol 39:224–229
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  12. Funke G., Lawson P. A., Collins M. D. 1995; Heterogeneity within human-derived Centers for Disease Control and Prevention (CDC) coryneform group ANF-1-like bacteria and description of Corynebacterium auris sp. nov. Int J Syst Bacteriol 45:735–739
    [Google Scholar]
  13. Funke G., Romos C. P., Collins M. 1997; Corynebacterium coyleae sp. nov., isolated from human clinical specimens. Int J Syst Bacteriol 47:92–96
    [Google Scholar]
  14. Harper J. J., Davis G. H. G. 1979; Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29:56–58
    [Google Scholar]
  15. Herrera-Alcaraz E. A., Valero-Guillén P. L., Martin-Luengo F., Soriano F. 1990; Taxonomic implications of the chemical analysis of the D2 group of corynebacteria. FEMS Microbiol Lett 72:341–344
    [Google Scholar]
  16. Hiraishi A. 1992; Direct automated sequencing of 16S rRNA amplified by polymerase chain reaction from bacterial culture without DNA purification. Lett Appl Microbiol 15:210–213
    [Google Scholar]
  17. Hiraishi A., Shin Y. K., Ueda Y., Sugiyama J. 1994; Automated sequencing of PCR-amplified 16S rRNA on ‘Hydrolink’ gels. J Microbiol Methods 19:145–154
    [Google Scholar]
  18. Ikeguchi N., Nihira T., Kishimoto A., Yamada T. 1988; Oxidative pathway form squalene to geranylacetone in Arthrobacter sp. strain Y-ll. Appl Environ Microbiol 54:381–385
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  20. Laneelle M. A., Asselineau J., Welby M., Norgard M. V., Imaeda T., Pollice M. C., Barksdale L. 1980; Biological and chemical bases for the reclassification of Brevibacterium vita-rumen (Bechdel et al.) Breed (Approved Lists, 1980) as Corynebacterium vitarumen (Bechdel et al.) comb, nov and Brevibacterium liquefaciens Okabayashi and Masuo (Approved Lists, 1980) as Corynebacterium liquefaciens (Okabayashi and Masuo) comb. nov. Int J Syst Bacteriol 30:539–546
    [Google Scholar]
  21. Lechevalier M. P., Lechevalier H. A. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  23. Mikami H., Ishida Y. 1983; Post-column fluorometric detection of reducing sugars in high-performance liquid chromatography using arginine. Bunseki Kagaku 32:E207–E210
    [Google Scholar]
  24. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia and related taxa by thin-layer Chromatographie analysis of whole-organism methanolysates. J Gen Microbiol 88:200–206
    [Google Scholar]
  25. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95
    [Google Scholar]
  26. Pascual C, Lawson P. A., Farrow J. A., Gimenez M. N., Collins M. D. 1995; Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int J Syst Bacteriol 45:724–728
    [Google Scholar]
  27. Pitcher D. G. 1983; Deoxyribonucleic acid base composition of Corynebacterium diphtheriae and other corynebacteria with cell wall type IV. FEMS Microbiol Lett 16:291–295
    [Google Scholar]
  28. Pitcher D., Soto A., Soriano F., Valero-Guillän P. 1992; Classification of coryneform bacteria associated with human urinary tract infection (group D2) as Corynebacterium urealyticum sp. nov. Int J Syst Bacteriol 42:178–181
    [Google Scholar]
  29. Riegel P., , de Briel D., Prevost G., Jehl F., Monteil H. 1993a; Proposal of Corynebacterium propinquum sp. nov. for Corynebacterium group ANF-3 strains. FEMS Microbiol Lett 113:229–234
    [Google Scholar]
  30. Riegel P., , de Briel D., Provost G., Jehl F., Monteil H., Minck R. 1993b; Taxonomic study of Corynebacterium group ANF-1 strains: proposal of Corynebacterium afermentans sp. nov. containing the subspecies C. afermentans subsp. afermentans subsp. nov. and C. afermentans subsp. lipophilum subsp. nov. Int J Syst Bacteriol 43:287–292
    [Google Scholar]
  31. Ruimy R., Riegel P., Boiron P., Monteil H., Christen R. 1995; Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences. Int J Syst Bacteriol 45:740–746
    [Google Scholar]
  32. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  34. Schleifer K. H., Kandier O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  35. Suzuki K., Komagata K. 1983; Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int J Syst Bacteriol 33:188–200
    [Google Scholar]
  36. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  37. Uchida K., Aida K. 1977; Acyl type of bacterial cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 23:249–260
    [Google Scholar]
  38. Willet J. D., Sharpless K. B., Lord K. E., , van Tamelen E. E., Clayton P. B. 1967; Squalene-2,3-oxide, and intermediate in enzymatic conversion of squalene to lanosterol and cholesterol. J Biol Chem 242:4182–4191
    [Google Scholar]
  39. Yamada Y., Motoi H., Kinoshita S., Takada N., Okada H. 1975; Oxidative degradation of squalene by Arthrobacter species. Appl Microbiol 29:400–404
    [Google Scholar]
  40. Yamada Y., Kusuhara N., Okada H. 1977; Oxidation of linear terpenes and squalene variants by Arthrobacter sp. Appl Environ Microbiol 33:771–776
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-223
Loading
/content/journal/ijsem/10.1099/00207713-49-1-223
Loading

Data & Media loading...

Most cited Most Cited RSS feed