1887

Abstract

A new halophilic sulfate-reducing bacterium, strain GSL-But2, was isolated from surface sediment of the Southern arm of the Great Salt Lake, UT, USA. The organism grew with a number of straight-chain fatty acids (C–C), 2-methylbutyrate, -alanine and pyruvate as electron donors. Butyrate was oxidized incompletely to acetate. Sulfate, but not sulfite or thiosulfate, served as an electron acceptor. Growth was observed between 2 and 19% (w/v) NaCl with an optimum at 4–5% (w/v) NaCl. The optimal temperature and pH for growth were around 34 °C and pH 6·5–7·3, respectively. The generation time under optimal conditions in defined medium was around 28 h, compared to 20 h in complex medium containing yeast extract. The G+C content was 35·0 mol%. 16S rRNA gene sequence analysis revealed that strain GSL-But2 belongs to the family within the delta-subclass of the Proteobacteria and suggested that strain GSL-But2 represents a member of a new genus. The name gen. nov., sp. nov. is proposed for this organism. The type strain of is strain GSL-But2 (= DSM 11763 = ATCC 700426).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-193
1999-01-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-193.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-193&mimeType=html&fmt=ahah

References

  1. Brandt K. K., Ingvorsen K. 1997; Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst Appl Microbiol 20:366–373
    [Google Scholar]
  2. Brysch K., Schneider C., Fuchs G., Widdel F. 1987; Litho-autotrophic growth of sulfate-reducing bacteria, and descrip-tion of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol 148:264–274
    [Google Scholar]
  3. Canfield D. E., Des Marais D. J. 1993; Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim Cosmochim Acta 57:3971–3984
    [Google Scholar]
  4. Caumette P., Cohen Y., Matheron R. 1991; Isolation and characterization of Desulfovibrio halophilus sp. nov., a halo-philic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst Appl Microbiol 14:33–38
    [Google Scholar]
  5. Caumette P., Matheron R., Raymond N., Relexans J.-C. 1994; Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol 13:273–286
    [Google Scholar]
  6. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36
    [Google Scholar]
  7. Cord-Ruwisch R., Kleinitz W., Widdel F. 1987; Sulfate-reducing bacteria and their activities in oil production. J Petrol Technol 1:97–106
    [Google Scholar]
  8. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  9. Felsenstein J. 1993; phylip (Phylogeny Inference Package) version 3.5.1. Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  10. Finster K., Liesack W., Tindall B. J. 1997; Desulfospira joergensenii, gen. nov., sp. nov., a new sulfate-reducing bacterium isolated from marine surface sediment. Syst Appl Microbiol 20:201–208
    [Google Scholar]
  11. Jørgensen B. B., Cohen Y. 1977; Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnol Oceanogr 22:657–666
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mamalian Protein Metabolism21–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kohring L. L., Ringelberg D. B., Devereux R., Stahl D. A., Mittelman M. W., White D. C. 1994; Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 119:303–308
    [Google Scholar]
  14. Krekeler D., Sigalevich P., Teske A., Cypionka H., Cohen Y. 1997; A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch Microbiol 167:369–375
    [Google Scholar]
  15. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The ribosomal database project (RDP). Nucleic Acids Res 25:109–111
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  17. Nga D. P., Ha D.T. C., Hien L.T., Stan-Lotter H. 1996; Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392
    [Google Scholar]
  18. Ollivier B., Hatchikian C. E., Prensier G., Guezennec J., Garcia J.-L. 1991; Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81
    [Google Scholar]
  19. Ollivier B., Caumette P., Garcia J.-L., Mah R. A. 1994; Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38
    [Google Scholar]
  20. Porteuous L. A., Armstrong J. L., Sadler R. J., Watrud L. S. 1994; An effective method to extract DNA from environmental samples for polymerase chain reaction amplification and DNA fingerprint analysis. Curr Microbiol 29:301–307
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Skyring G. W. 1987; Sulfate reduction in coastal environments. Geomicrobiol J 5:295–374
    [Google Scholar]
  23. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  24. Tardy-Jacquenod C., Magot M., Laigret F., Kaghad M., Patel B. K. C., Guezennec J., Matheron R., Caumette P. 1996; Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int J Syst Bacteriol 46:710–715
    [Google Scholar]
  25. Tardy-Jacquenod C., Magot M., Patel B. K. C., Matheron R., Caumette P. 1998; Desulfotomaculum halophilum sp. nov., a new halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48:333–338
    [Google Scholar]
  26. Vainshtein M., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol 15:554–566
    [Google Scholar]
  27. Visuvanathan S., Moss M. T., Stanford J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10:59–64
    [Google Scholar]
  28. Widdel F. 1980 Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfatreduzierender Bakterien PhD thesis Göttingen University;
    [Google Scholar]
  29. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes: a Handbook of the Biology of Bacteria; Ecophysiology, Isolation, Identification, Applications, 2.3353–3378 Balows A. and others New York: Springer;
    [Google Scholar]
  30. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacterpostgatei gen. nov., sp. nov. Arch Microbiol 129:395–400
    [Google Scholar]
  31. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149
    [Google Scholar]
  32. ZoBell C. E. 1958; Ecology of sulfate-reducing bacteria. Producers’ Monthly 22:12–29
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-49-1-193
Loading
/content/journal/ijsem/10.1099/00207713-49-1-193
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error