gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll production from hypersaline Ekho Lake Free

Abstract

Eight Gram-negative, aerobic, pointed and budding bacteria were isolated from various depths of the hypersaline, heliothermal and meromictic Ekho Lake (Vestfold Hills, East Antarctica). The cells contained storage granules and daughter cells could be motile. Bacteriochlorophyll a was sometimes produced, but production was repressed by constant dim light. The strains tolerated a wide range of temperature, pH, concentrations of artificial seawater and NaCI, but had an absolute requirement for sodium ions. Glutamate was metabolized with and without an additional source of combined nitrogen. The dominant fatty acid was C; other characteristic fatty acids were C, C 2-OH, C 3-OH, C C and C. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The DNA G+C base composition was 62–64 mol%. 16S rRNA gene sequence comparisons showed that the isolates were phylogenetically close to the genera , ‘’, , , and . Morphological, physiological and genotypic differences to these previously described and distinct genera support the description of a new genus and a new species, gen. nov., sp. nov. The type strain is EL-172 ( = DSM 11457).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-1-137
1999-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/1/ijs-49-1-137.html?itemId=/content/journal/ijsem/10.1099/00207713-49-1-137&mimeType=html&fmt=ahah

References

  1. Biebl H., Drews G. 1969; Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. Zentbl Bakteriol 123:425–452
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  3. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol 49:25–68
    [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  5. Drews G. 1974 Mikrobiologisches Praktikum, 2nd. Berlin: Springer;
    [Google Scholar]
  6. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  7. Franzmann P. D., Burton H. R., McMeekin T. A. 1987; Halomonas subglaciescola a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 37:27–34
    [Google Scholar]
  8. Fuerst J. A., Hawkins J. A., Holmes A., Sly L. I., Moore C. J., Stackebrandt E. 1993; Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from freshwater. Int J Syst Bacteriol 43:125–134
    [Google Scholar]
  9. Gonzalez J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780
    [Google Scholar]
  10. Gosink J. J., Herwig R. P., Staley J. T. 1997; Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365
    [Google Scholar]
  11. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239
    [Google Scholar]
  12. Harashima K., Nakagawa M., Murata N. 1982; Photochemical activities of bacteriochlorophyll in aerobically grown cells of aerobic heterotrophs, Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101). Plant Cell Physiol 23:185–193
    [Google Scholar]
  13. Hirsch P. 1974; Budding bacteria. Annu Rev Microbiol 28:391–444
    [Google Scholar]
  14. Holmes A. J., Kelly D. P., Baker S. C., Thompson A. S., Marco P. D., Kenna E. M., Murrell J. C. 1997; Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov. : novel methylotrophs able to grow on methanesulfonic acid. Arch Microbiol 167:46–53
    [Google Scholar]
  15. Hudson R. A., Thompson D. E., Collins M. D. 1993; Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia by small-subunit rRNA gene sequences. FEMS Microbiol Lett 108:103–110
    [Google Scholar]
  16. James S. R., Burton H. R., McMeekin T. A., Mancuso C. A. 1994; Seasonal abundance of Halomonas meridiana, Halomonas subglaciescola, Flavobacterium gondwanense and Flavobacterium salegens in four antarctic lakes. Antarct Sci 6:325–332
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism21–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Kreisel H., Schauer F. 1987 Methoden des mykologischen Laboratoriums Stuttgart: Gustav Fischer;
    [Google Scholar]
  19. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hyper saline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372
    [Google Scholar]
  20. Lafay B., Ruimy R., Rausch De Traubenberg C., Breittmayer V., Gauthier M. J., Christen R. 1995; Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int J Syst Bacteriol 45:290–296
    [Google Scholar]
  21. Lyman J., Fleming R. H. 1940; Composition of sea water. J Mar Res 3:134–146
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  23. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad SciUSA 85:2444–2448
    [Google Scholar]
  24. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounds for photomicrographs of microorganisms. J Microbiol Methods 4:303–306
    [Google Scholar]
  25. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 11:4844–4846
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method : a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. US FCC Newsl 20:1–6
    [Google Scholar]
  29. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145
    [Google Scholar]
  30. Shiba T., Simidu U. 1982; Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217
    [Google Scholar]
  31. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria, 2nd. Baltimore: Williams & Wilkins;
    [Google Scholar]
  32. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology607–654 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov., sp. nov. - a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology 64:295–305
    [Google Scholar]
  34. Staley J. T. 1968; Prosthecomicrobium and Ancalomicrobium new prosthecate fresh water bacteria. J Bacteriol 95:1921–1944
    [Google Scholar]
  35. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130
    [Google Scholar]
  36. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202
    [Google Scholar]
  37. Van Ert M., Staley J. T. 1971; Gas-vacuolated strains of Microcyclus aquaticus. J Microbiol 108:236–240
    [Google Scholar]
  38. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  39. Yurkov V., Stackebrandt E., Holmes A. 7 other authors 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434
    [Google Scholar]
  40. Yurkov V., Stackebrandt E., Buss O., Vermeglio A., Gorlenko V., Beatty J. T. 1997; Reorganization of the genus Erythromicrobium: description of ‘Erythromicrobium sibiricum’ as Sandaracinobacter sibiricus gen. nov., sp. nov., and of Erythromicrobium ursincola’ as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47:1172–1178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-1-137
Loading
/content/journal/ijsem/10.1099/00207713-49-1-137
Loading

Data & Media loading...

Most cited Most Cited RSS feed