1887

Abstract

Thirty-nine selected strains belonging to different genomic species were clustered on the basis of their susceptibility to 17 antibiotics, pigment production and ability to nodulate plants of the genus and/or the family Elaeagnaceae, or the family Casuarinaceae. The majority of the strains studied fell into three cluster groups, A, E and C, corresponding to the three host-specificity groups, , and . Within the groups, eight composite clusters, consisting of at least two strains, and five single-member clusters were recovered at the 0·74 distance level, in good agreement with levels of genetic relatedness between the strains. In addition, five strains were recovered as single-member clusters not in the cluster groups, four of them representing single-member genospecies and one strain not assigned to any known genospecies. The concordance between the phenotypic clusters and the genospecies described previously shows that the grouping may reflect the taxonomic structure of the genus . For some clusters, differentiating phenotypic characters were found which may be useful for species definition.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1265
1998-10-01
2022-05-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1265.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1265&mimeType=html&fmt=ahah

References

  1. Akimov V. N., Dobritsa S. V. 1992; Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol 15:372–379
    [Google Scholar]
  2. Akkermans A. D. L., Hahn D., Baker D. D. 1992; The family Frankiaceae. In The Prokarvotes, 2nd. 21069–1084 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  3. Baker D. D. 1987; Relationships among pure-cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248
    [Google Scholar]
  4. Baker D. 1990; Methods for the isolation, culture and characterization of the Frankiaceae Soil actinomycetes and symbionts of actinorhizal plants. In Isolation of Biotechnological Organisms from Nature213–236 Labeda D. P. New York: McGraw-Hill;
    [Google Scholar]
  5. Baker D., Torrey J. G., Kidd G. H. 1979; Isolation by sucrosedensity fractionation and cultivation in vitro of actinomycetes from nitrogen-fixing root nodules. Nature 281:76–78
    [Google Scholar]
  6. Baker D., Pengelly W. L., Torrey J. G. 1981; Immunochemical analysis of relationships among isolated frankiae (Actinomycetales). Int J Syst Bacteriol 31:148–151
    [Google Scholar]
  7. Bascomb S., Lapage S. P., Curtis M. A., Willcox W. R. 1973; Identification of bacteria by computer: identification of reference strains. J Gen Microbiol 11:291–315
    [Google Scholar]
  8. Becking J. H. 1970; Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Int J Syst Bacteriol 20:201–220
    [Google Scholar]
  9. Benson D. R., Silvester W. B. 1993; Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319
    [Google Scholar]
  10. Berry A., Torrey J. G. 1979; Isolation and characterization in vivo and in vitro of an actinomycetous endophyte from Alnus rubra Bong. In Symbiotic Nitrogen Fixation in the Management of Temperate Forests69–83 Gordon J. C., Wheeler C. T., Perry D. A. Corvallis, OR: Oregon State University Press;
    [Google Scholar]
  11. Blom J., Roelofsen W., Akkermans A. D. L. 1980; Growth of Frankia Avcll on media containing Tween 80 as C-source. FEMS Microbiol Lett 9:131–135
    [Google Scholar]
  12. Bosco M., Fernandez M. P., Simonet P., Materassi R., Normand P. 1992; Evidence that some Frankia sp. strains are able to cross boundaries between Alnus and Elaeagnus host specificity groups. Appl Environ Microbiol 58:1569–1576
    [Google Scholar]
  13. Burggraaf A. J. P., Shipton W. A. 1982; Estimates of Frankia growth under various pH and temperature regimes. Plant Soil 69:135–147
    [Google Scholar]
  14. Callaham D., Del Tredici P., Torrey J. G. 1978; Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902
    [Google Scholar]
  15. Carrasco A., Salyards J. R., Berry A. M. 1995; Studies of two Frankia strains isolated from Trevoa trinervis Miers. Plant Soil 171:359–363
    [Google Scholar]
  16. Carú M. 1993; Characterization of native Frankia strains isolated from Chilean shrubs (Rhamnaceae). Plant Soil 157:137–145
    [Google Scholar]
  17. Dawson J. O., Gibson A. H. 1987; Sensitivity of selected Frankia isolates from Casuarina Allocasuarina and North American host plants to sodium chloride. Physiol Plant 70:272–278
    [Google Scholar]
  18. Diem H. G., Dommergues Y. 1983; The isolation of Frankia from nodules of Casuarina. Can J Bot 61:2822–2825
    [Google Scholar]
  19. Dobritsa S. V. 1990; A linear plasmid in two Frankia strains. Abstracts of the 8th International Congress on Nitrogen Fixation Knoxville, TN, USA: Abstract E-85
    [Google Scholar]
  20. Dobritsa S. V., Stupar O. S. 1989; Genetic heterogeneity among Frankia isolates from root nodules of individual actinorhizal plants. FEMS Microbiol Lett 58:287–292
    [Google Scholar]
  21. Dobritsa S. V., Novik S. N., Stupar O. S. 1990; Infectivity and host specificity of strains of Frankia. Microbiology (English translation of Mikrobiologiya) 59:210–214
    [Google Scholar]
  22. Du D., Baker D. D. 1992; Actinorhizal host-specificity of Chinese Frankia strains. Plant Soil 144:113–116
    [Google Scholar]
  23. Faure-Raynaud M., Daniere C., Moiroud A., Capellano A. 1990; Preliminary characterization of an ineffective Frankia derived from a spontaneously neomycin-resistant strain. Plant Soil 129:165–172
    [Google Scholar]
  24. Fernandez M. P., Meugnier H., Grimont P. A. D., Bardin R. 1989; Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429
    [Google Scholar]
  25. Friedman R., MacLowry J. 1973; Computer identification of bacteria on the basis of their antibiotic susceptibility patterns. Appl Microbiol 26:314–317
    [Google Scholar]
  26. Gardes M., Bousquet J., Lalonde M. 1987; Isozyme variation among 40 Frankia strains. Appl Environ Microbiol 53:1596–1603
    [Google Scholar]
  27. Gauthier D., Diem H. G., Dommergues Y. 1981; Infectivité et effectivité de souches de Frankia isolées de nodules de Casuarina equiseti/olia et d’Hippophaè rhamnoides. C R Acad Sci Paris Ser III 293:489–491
    [Google Scholar]
  28. Gauthier D., Frioni L., Diem H. G., Dommergues Y. 1984; The Colletta spinosissima-Frankia symbiosis. Acta Oecol 5:231–239
    [Google Scholar]
  29. Gilardi G. L. 1971; Antimicrobial susceptibility as a diagnostic aid in the identification of nonfermenting gram-negative bacteria. Appl Microbiol 22:821–823
    [Google Scholar]
  30. Goodfellow M., Orchard V. A. 1974; Antibiotic sensitivity of some nocardioform bacteria and its value as a criterion for taxonomy. J Gen Microbiol 83:375–387
    [Google Scholar]
  31. Gordon R. E., Barnett D. A. 1977; Resistance to rifampin and lysozyme of strains of some species of Mycobacterium and Nocardia as a taxonomic tool. Int J Syst Bacteriol 27:176–178
    [Google Scholar]
  32. Hafeez F., Akkermans A. D. L., Chaudhary A. H. 1984; Morphology, physiology and infectivity of two Frankia isolates An 1 and An 2 from root nodules of Alnus nitida. Plant Soil 78:45–59
    [Google Scholar]
  33. Hahn D., Dorsch M., Stackebrandt E., Akkermans A. D. L. 1989; Synthetic oligonucleotide probes for identification of Frankia strains. Plant Soil 118:211–219
    [Google Scholar]
  34. Lalonde M., Calvert H. E., Pine S. 1981; Isolation and use of Frankia strains in actinorhizae formation. In Current Perspectives in Nitrogen Fixation296–299 Gibson A. H., Newton W. E. Canberra: Australian Academy of Sciences;
    [Google Scholar]
  35. Lalonde M., Simon L., Bousquet J., Séguin A. 1988; Advances in the taxonomy of Frankia recognition of species alni and elaeagni and novel subspecies pommerii and vandijkii. In Nitrogen Fixation: Hundred Years After671–680 Bothe H., de Bruijn F. J., Newton WE. New York: Gustav Fisher;
    [Google Scholar]
  36. Lechevalier M. P. 1994; Taxonomy of the genus Frankia (Actinomycetales). Int J Syst Bacteriol 44:1–8
    [Google Scholar]
  37. Lechevalier M. P., Horrière F., Lechevalier H. A. 1982; The biology of Frankia and related organisms. Dev Ind Microbiol 23:51–60
    [Google Scholar]
  38. Lechevalier M. P., Baker D., Horrière F. 1983; Physiology, chemistry, serology and infectivity of two Frankia isolates from Alnus incana subsp. rugosa. Can J Bot 61:2826–2833
    [Google Scholar]
  39. Lumini E., Bosco M., Fernandez M. P. 1996; PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiol Ecol 21:303–311
    [Google Scholar]
  40. Margheri M. C., Vagnoli L., Favilli F., Sili C. 1985; Proprietà morfo-fisiologiche di Frankia ceppo EanI157 da Elaeagnus angustifolia infettivo su Alnus glutinosa. Ann Microbiol 35:143–153
    [Google Scholar]
  41. Mirza M. S., Janse J. D., Hahn D., Akkermans A. D. L. 1991; Identification of atypical Frankia strains by fatty acid analysis. FEMS Microbiol Lett 83:91–98
    [Google Scholar]
  42. Moiroud A., Faure-Raynaud M. 1983; Influence de quelques herbicides à large spectre sur la croissance et l’infectivité de cultures pures de Frankia. Plant Soil 74:133–136
    [Google Scholar]
  43. Murry M. A., Fontaine M. S., Torrey J. G. 1984; Growth kinetics and nitrogenase induction in Frankia sp. HFPArI3 grown in batch culture. Plant Soil 78:61–78
    [Google Scholar]
  44. Naik S. P., Samsonoff W. A., Ruck R. E. 1989; Effects of surface-active agents on drug susceptibility levels and ultra-structure of Mycobacterium avium complex organisms isolated from AIDS patients. Diagn Microbiol Infect Dis 11:11–19
    [Google Scholar]
  45. Nazaret S., Simonet P., Normand P., Bardin R. 1989; Genetic diversity among Frankia isolated from Casuarina nodules. Plant Soil 118:241–247
    [Google Scholar]
  46. Nikitin D. I., Vishnevetskaya O. Yu., Zlatkin I. V. 1988; Grouping of oligotrophic microorganisms on the basis of their antibiotic resistance and the dynamic membrane characteristics. Microbiology (English translation of Mikrobiologiya) 57:210–215
    [Google Scholar]
  47. Normand P., Lalonde M. 1982; Evaluation of Frankia strains isolated from provenances of two Alnus species. Can J Microbiol 28:1133–1142
    [Google Scholar]
  48. Normand P., Lalonde M. 1986; The genetics of actinorhizal Frankia a review. Plant Soil 90:429–453
    [Google Scholar]
  49. Normand P., Orso S., Cournoyer B., Jeannin P., Chapelon C., Dawson J., Evtushenko L., Misra A. K. 1996; Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9
    [Google Scholar]
  50. Penner J. L., Preston M. A. 1980; Differences among Providencia species in their in vitro susceptibilities to five antibiotics. Antimicrob Agents Chemother 18:868–871
    [Google Scholar]
  51. Petralli J., Russell E., Kataoka A., Merigan T. C. 1970; Online computer quality control of antibiotic-sensitivity testing. New Engl J Med 283:735–738
    [Google Scholar]
  52. Reva O. N., Vyunitskaya V. A., Reznik S. R., Kozachko I. A., Smirnov V. V. 1995; Antibiotic susceptibility as a taxonomic characteristic of the genus Bacillus. Int J Syst Bacteriol 45:409–411
    [Google Scholar]
  53. Soavizzi M., Bronner F. 1987; Un modèle statistique d’interpretation de l’antibiogramme. C R AcadSci Paris Ser HI 304:325–329
    [Google Scholar]
  54. Sharaya L. S., Parijskaya A. N., Kalakoutskii L. V. 1985; Isolation of pure cultures of actinomycetes of the genus Frankia from nitrogen-fixing root nodules of silver oleaster and sea buckthorn. Mikrobiologiya 54:1017–1018 (in Russian)
    [Google Scholar]
  55. Shi Y., Ruan J., Zakrzewska-Czerwinska J., Mordarski M. 1991; DNA homology of some Frankia strains. Actinomycetes 2:86–87
    [Google Scholar]
  56. Shipton W. A., Burggraaf A. J. P. 1982a; A comparison of the requirements for various carbon and nitrogen sources and vitamins in some Frankia isolates. Plant Soil 69:149–161
    [Google Scholar]
  57. Shipton W. A., Burggraaf A. J. P. 1982b; Frankia growth and activity as influenced by water potential. Plant Soil 69:293–297
    [Google Scholar]
  58. Sielaff B. H., Johnson E. A., Matsen J. M. 1976; Computer-assisted bacterial identification utilizing antimicrobial susceptibility profiles generated by Autobac 1. J Clin Microbiol 3:105–109
    [Google Scholar]
  59. Simon L., Jabaji-Hare S., Bousquet J., Lalonde M. 1989; Confirmation of Frankia species using cellular fatty acid analysis. Syst Appl Microbiol 11:229–235
    [Google Scholar]
  60. Simonet P., Normand P., Moiroud A., Lalonde M. 1985; Restriction enzyme digestion patterns of Frankia plasmids. Plant Soil 87:49–60
    [Google Scholar]
  61. Sneath P. H. A., Sokal R. R. 1973; Numerical Taxonomy. The Principles and Practice of Numerical Classification San Francisco, CA: W. H. Freeman;
    [Google Scholar]
  62. St-Laurent L., Bousquet J., Simon L., Lalonde M. 1987; Separation of various Frankia strains in the Alnus and Elaeagnus host specificity groups using sugar analysis. Can J Microbiol 33:764–772
    [Google Scholar]
  63. Torrey J. G. 1990; Cross-inoculation groups within Frankia and host–endosymbiont associations. In The Biology of Frankia and Actinorhizal Plants83–106 Schwintzer C. R., Tjepkema J. D. San Diego, CA: Academic Press;
    [Google Scholar]
  64. Tsukamura M. 1981; Test for susceptibility to mitomycin C as aids for differentiating the genus Rhodococcus from the genus Nocardia and for differentiating Mycobacterium fortuitum and Mycobacterium chelonei from other rapidly growing mycobacteria. Microbiol Immunol 25:1197–1199
    [Google Scholar]
  65. Tsukamura M. 1982; Differentiation between the genera Rhodococcus and Nocardia and between species of the genus Mycobacterium by susceptibility to bleomycin. J Gen Microbiol 128:2385–2388
    [Google Scholar]
  66. Tsukamura M. 1988; Differentiation between genera Rhodococcus and Nocardia by susceptibility testing to kanamycin and some other antituberculosis agents. Microbiol Immunol 32:441–445
    [Google Scholar]
  67. Ursing J. B., Rosselló-Mora R. A., Garcia-Valdés E., Lalucat J. 1995; Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45:604
    [Google Scholar]
  68. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  69. Vogel C. S., Dawson J. O. 1986; In vitro growth of five Frankia isolates in the presence of four phenolic acids and juglone. Soil Biol Biochem 18:227–231
    [Google Scholar]
  70. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  71. Weber A., Smolander A., Nurmiaho-Lassila E.-L., Sundman V. 1988; Isolation and characterization of Frankia strains from Alnus incana and Alnus glutinosa in Finland. Symbiosis 6:97–116
    [Google Scholar]
  72. Williams ST., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
  73. Zhang Z., Torrey J. G. 1985; Studies of an effective strain of Frankia from Allocasuarina. Plant Soil 87:1–16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1265
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1265
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error