1887

Abstract

As part of a general survey of the biodiversity and inherent ecophysiology of bacteria associated with coastal Antarctic sea-ice diatom assemblages, eight strains were identified by 16S rRNA sequence analysis as belonging to the genus . The isolates were non-pigmented, curved rod-like cells which exhibited psychrophilic and facultative anaerobic growth and possessed an absolute requirement for sea water. One isolate was able to form gas vesicles. All strains synthesized the 3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (22:63, DHA) (0·7–8·0% of total fatty acids). Previously, DHA has only been detected in strains isolated from deep-sea benthic and faunal habitats and is associated with enhanced survival in permanently cold habitats. The G+C content of the DNA from the Antarctic strains ranged from 35 to 42 mol% and DNA-DNA hybridization analyses indicated that the isolates formed five genospecies, including the species (ACAM 550). 16S rRNA sequence analysis indicated that the strains formed a cluster in the -subclass of the with . Sequence similarities ranged from 95·2 to 100% between the various Antarctic isolates. Phenotypic characterization confirmed distinct differences between the different genospecies. These studies indicate that the DHA-producing Antarctic isolates consist of five different species: and four novel species with the proposed names sp. nov. (ACAM 459), sp. nov. (ACAM 179), sp. nov. (ACAM 608) and sp. nov. (ACAM 607).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1171
1998-10-01
2022-05-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1171.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1171&mimeType=html&fmt=ahah

References

  1. Baumann P., Furniss A. L., Lee J. V. 1984; Genus I. Vibrio Pacini 1854, 411AL. Bergeys Manual of Systematic Bacteriology 1518–538 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Bowman J. P., Austin J. J., Cavanagh J., Sanderson K. 1996; Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacteriol 46:841–848
    [Google Scholar]
  3. Bowman J. P., McCammon S. A., Brown M. V., McMeekin T. A. 1997a; Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997b; Novel species of Shewanella isolated from Antarctic sea ice with the ability to produce eicosapentaenoic acid (20:5a>3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047
    [Google Scholar]
  5. Buia A. D. 1997 Production of cold adapted enzymes by Antarctic sea ice bacteria Honours thesis. Institute of Antarctic and Southern Ocean Studies; University of Tasmania:
    [Google Scholar]
  6. Craigschmidt M. C., Stieh K. E., Lien E. L. 1996; Retinal fatty acids of piglets fed docosahexaenoic and arachidonic acids from microbial sources. Lipids 3:53–59
    [Google Scholar]
  7. D’Aoust J. Y., Kushner D. J. 1972; Vibrio psychroerythrus sp. n. : classification of the psychrophilic marine bacterium, NRC 1004. J Bacteriol 111:340–342
    [Google Scholar]
  8. DeLong E. F., Yayanos A. A. 1986; Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol 51:730–737
    [Google Scholar]
  9. DeLong E. F., Franks D. G., Alldredge A. L. 1993; Phylo-genetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934
    [Google Scholar]
  10. DeLong E. F., Franks D. G., Yayanos A. A. 1997; Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108
    [Google Scholar]
  11. Deming J. W., Hada H., Colwell R. R., Luehrsen K. R., Fox G. R. 1984; The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920
    [Google Scholar]
  12. Deming J. W., Somers L. K., Straube W. L., Swartz D. G., MacDonell M. T. 1988; Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160
    [Google Scholar]
  13. Euzéby J. P. 1998; Taxonomic note: necessary correction of specific and subspecific epithets according to Rules 12c and 13b of the International Code of Nomenclature of Bacteria (1990 Revision). Int J Syst Bacteriol 48:1073–1075
    [Google Scholar]
  14. Farkas K., Ratchford I. A. J., Noble R. C., Speake B. K. 1996; Changes in the size and docosahexaenoic acid content of adipocytes during chick embryo development. Lipids 31:313–321
    [Google Scholar]
  15. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.57c Seattle: University of Washington;
    [Google Scholar]
  16. Franzmann P. D., Deprez P. P., McGuire A. J., McMeekin T. A., Burton H. R. 1990; The heterotrophic bacterial microbiota of Burton Lake, Antarctica. Polar Biol 10:261–264
    [Google Scholar]
  17. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alter omonas Shew anelici and Montella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalter omonas gen. nov. and proposal of twelve new species combinations. Int J Svst Bacteriol 45:755–761
    [Google Scholar]
  18. Gosink J. J., Staley J. T. 1995; Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl Environ Microbiol 61:3486–3489
    [Google Scholar]
  19. Hamamoto T., Takata N., Kudo T., Horikoshi K. 1995; Characteristic presence of polyunsaturated fatty acids in marine psychrophilic vibrios. FEMS Microbiol Lett 129:51–56
    [Google Scholar]
  20. Hungate R. E. 1968; A roll tube method for cultivation of strict anaerobes. Methods Microbiol3B117–132
    [Google Scholar]
  21. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  22. Kelly F. J. 1991; The metabolic role of n-3 PUFA: relationship to human disease. Comp Biochem Physiol 98:581–585
    [Google Scholar]
  23. Linko Y. Y., Hayakawa K. 1996; Docosahexaenoic acid - a valuable nutraceutical. Trends Food Sci Technoll59–63
    [Google Scholar]
  24. Lovely D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 54:683–689
    [Google Scholar]
  25. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  26. Nichols D. S., Russell N. J. 1996; Fatty acid adaptation in an Antarctic bacterium - changes in primer utilization. Microbiology 142:747–754
    [Google Scholar]
  27. Nichols D. S., Nichols P. D., McMeekin T. A. 1993; Poly-unsaturated fatty acids in Antarctic bacteria. Antarct Sci 5:149–160
    [Google Scholar]
  28. Nichols D. S., Nichols P. D., McMeekin T. A. 1995; Ecology and physiology of psychrophilic bacteria from Antarctic saline lakes and sea ice. Sci Prog 78:311–347
    [Google Scholar]
  29. Nichols D. S., Hart P., Nichols P. D., McMeekin T. A. 1996; Enrichment of the rotifer Brachionus plicatilis fed an Antarctic bacterium containing polyunsaturated fatty acids. Aquaculture 147:115–125
    [Google Scholar]
  30. Nichols D. S., Brown J. L., Nichols P. D., McMeekin T. A. 1997; Production of eicosapentaenoic acid and arachidonic acids by an Antarctic bacterium: response to growth temperature. FEMS Microbiol Lett 152:349–354
    [Google Scholar]
  31. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyldisulphide adducts. J Microbiol Methods 5:49–55
    [Google Scholar]
  32. Ostrowski A. C., Divakaran S. 1990; Survival and bio-conversion of n-3 fatty acids during early development of dolphin (Coryphaena hippurus) larvae fed oil-enriched rotifers. Aquaculture 89:273–285
    [Google Scholar]
  33. Overmann J., Pfennig N. 1989; Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152:401–406
    [Google Scholar]
  34. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial growth throughout the entire biokinetic range. J Bacteriol 154:1222–1226
    [Google Scholar]
  35. Rossello-Móra R. A., Ludwig W., Kampfer P., Amann R., Schleifer K.-H. 1995; Ferrimonas balearica gen. nov., a new marine facultative Fe(III)-reducing bacterium. Syst Appl Microbiol 18:196–202
    [Google Scholar]
  36. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5:139–156
    [Google Scholar]
  37. Southgate P. C., Lou D. C. 1995; Improving the n-3 PUFA composition of Artemia using microcapsules containing marine oils. Aquaculture 134:91–99
    [Google Scholar]
  38. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  39. Staley J. T., Fuerst J. A., Giovannoni S., Schlesner H. 1992; The order Planctomycetales and the genera Planctomyces Pirellula Gemmata and Isosphaera. The Prokaryotes IV3710–3731 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  40. Suzuki M. T., Rappé M. S., Haimberger Z. W., Winfield H., Adair N., Strobel J., Giovannoni S. J. 1997; Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63:983–989
    [Google Scholar]
  41. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes 43352–3378 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  42. Yano Y., Nakayama A., Saito H., Ishihara K. 1994; Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 29:527–528
    [Google Scholar]
  43. ZoBell CE. 1946 Marine Microbiology Waltham, MA: Chronica Botanica;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1171
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1171
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error