sp. nov., a new starch-hydrolysing lactic acid bacterium isolated during cassava sour starch fermentation Free

Abstract

Two strains were isolated from sour cassava starch fermentation. The cells were Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They produced only (+)lactate and were homofermentative. Growth occurred at pH values of 5·0-7·0 and optimum growth occurred at pH 6·0. Growth was positive at 15 and 45 °C. The DNA G+C content was 48·4±0·2 mol%. Sequence analysis of the 16S rRNA gene revealed that strains OND 32 and YAM 1 clustered with, but were separate from related taxa. Protein pattern and sequence analyses of the 16S rRNA gene confirmed that the two new isolates represent a new species, for which the name is proposed; strain OND 32 is the type strain of this species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1101
1998-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1101.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1101&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microb Rev 43:260–296
    [Google Scholar]
  2. Champ M., Szylit O., Raibaud P., Abdelkader A. 1983; Amylase production by three Lactobacillus strains isolated from chicken crop. J Appl Bacterial 55:487–493
    [Google Scholar]
  3. Chuzel G., Zakhia N., Cereda M. P. 1995; Potentialites de nouveaux produits derives du manioc au Bresil. In Transformations Alimentaires du Manioc, . 571–579 Egbe T. A., Brauman A., Griffon D., Trèche S. Paris: ORSTOM;
    [Google Scholar]
  4. Collins M. D., Phillips B. A., Zanoni P. 1989; Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int J Syst Bacteriol 39:105–108
    [Google Scholar]
  5. Collins M. D., Rodriguez U., Ash C., Aguirre M., Farrow J. A. E., Martinez-Murcia A., Philips B. A., Williams A. M., Walbanks S. 1991; Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12
    [Google Scholar]
  6. Combet-Blanc Y., Ollivier B., Streicher C., Patel B. K., Dwivedi P. P., Pot B., Prensier G., Garcia J. L. 1995; Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45:9–16
    [Google Scholar]
  7. Damelin L. H., Dykes G. A., von Holy A. 1995; Biodiversity of lactic acid bacteria from food-related ecosystems. Microbios 83:13–22
    [Google Scholar]
  8. Dellaglio F., de Roissart H., Torriani S., Curk M. C., Janssens D. 1994; Caractéristiques générates des bactéries lactiques. In Bactéries Lactiques: Aspects Fondamentaux et Technologiques, . 25–116 de Roissart H., Luquet F. M. Uriage, France: Lorica;
    [Google Scholar]
  9. De Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  11. Dicks L. M. T., Du Plessis E. M., Dellaglio F., Lauer E. 1996; Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the ncotype of L. casei subsp. casei and rejection of the name Lactobacillus paracasei . Int J Syst Bacteriol 46:337–340
    [Google Scholar]
  12. Dufour D., Brabet C., Zakhia N., Chuzel G. 1995; Influence de la fermentation et du séchage solaire sur l’acquisition du pouvoir de panification de l’amidon aigre de manioc. In Transformations Alimentaires du Manioc, . 399–416 Egbe T. A., Brauman A., Griffon D., Treche S. Paris; ORSTOM:
    [Google Scholar]
  13. Felsenstein J. 1993; phylip (phylogenetic inference package), version 3.51c. Department of Genetics, University of Washington, Seattle; WA, USA:
    [Google Scholar]
  14. Fox G. E., Stackebrandt E., Hespelle R. B. 15 other authors 1980; The phylogeny of procaryotes. Science 209:457–463
    [Google Scholar]
  15. Giraud E., Brauman A., Keleke S., Lelong B., Raimbault M. 1991; Isolation and physiological study of an amylolytic strain of Lactobacillus plantarum . Appl Microbiol Biotechnol 36:379–383
    [Google Scholar]
  16. Giraud E., Champailler A., Raimbault M. 1994; Degradation of raw starch by a wild amylolytic strain of Lactobacillus plantarum . Appl Microbiol 60:4319–4323
    [Google Scholar]
  17. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127
    [Google Scholar]
  18. Hammes W. P., Vogel R. F. 1995; The genus Lactobacillus. In The Lactic Acid Bacteria, . 2 The Genera of Lactic Acid Bacteria19–54 Wood B. J. B., Holzapfel W. H. Glasgow: Chapman & Hall;
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism, . 21–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  20. Kandler O., Weiss N. 1986; Genus Lactobacillus Beijerinck 1901, 212AL. In Bergey’s Manual of Systematic Bacteriology, . 21209–1234 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Koch A. 1981; Growth measurement. In Manual of Methods for General Bacteriology, . 192–197 Gerdardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, . 115–175 Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  23. Lindgren S., Refai O. 1984; Amylolytic lactic acid bacteria in fish silage. J Appl Bacteriol 57:221–228
    [Google Scholar]
  24. McClelland M., Jones R., Patel Y., Nelson M. 1987; Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res 15:5985–6005
    [Google Scholar]
  25. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  26. Mercier P., Yerushalmi L., Rouleau D., Dochain D. 1992; Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amvlophilus . J Chem Technol Biotechnol 55:111–121
    [Google Scholar]
  27. Meshbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteria! 39:159–167
    [Google Scholar]
  28. Mori K., Yamazaki K., Ishiyama T., Katsumata M., Kobayashi K., Kawai Y., Inoue N., Shinano H. 1997; Comparative sequence analyses of the genes coding for 16S rRNA of Lactobacillus casei-related taxa. Int J Syst Bacteriol 47:54–57
    [Google Scholar]
  29. Nakamura L. K. 1981; Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int J Syst Bacterial 31:56–63
    [Google Scholar]
  30. Nakamura L. K., Crowell C. D. 1979; Lactobacillus amylophilus, a new starch-hydrolyzing species from swine waste-corn fermentation. Dev Ind Microbiol 20:531–540
    [Google Scholar]
  31. Neef J. M., Van de Peer Y., Hendriks L., de Wachter R. 1990; Comparison of small ribosomal subunit RNA sequences. Nucleic Acids Res 18: suppl 2237–2319
    [Google Scholar]
  32. Olympia M., Fukuda H., Ono H., Kaneko Y., Takan M. 1995; Characterization of starch-hydrolyzing lactic acid bacteria from a fermented fish and rice food, ‘burong isda’, and its amylolytic enzyme. J Ferment Bioeng 80:124–130
    [Google Scholar]
  33. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad SciUSA 85:2444–2448
    [Google Scholar]
  34. Pompeyo C. C., Gómez M. S., Gasparian S., Morlon-Guyot J. 1993; Comparison of amylolytic properties of Lactobacillus amylovorus and of Lactobacillus amvlophilus . Appl Microbiol Biotechnol 40:266–269
    [Google Scholar]
  35. Pot B., Janssens D. 1993; The potential role of a culture collection for identification and maintenance of lactic acid bacteria. In The Lactic Acid Bacteria, . 81–87 Foo E. L., Griffin H. G., Mollby R., Heden C. G. Norfolk: Horizon Scientific Press;
    [Google Scholar]
  36. Pot B., Hertel C., Ludwig W., Descheemaeker P., Kersters K., Schleifer K. H. 1993; Identification and classification of Lactobacillus acidophilus, L. gasseri and L. johnsonii strains by SDS-PAGE and rRNA-targeted oligonucleotide probe hybridization. J Gen Microbiol 139:513–517
    [Google Scholar]
  37. Pot B., Vandamme P., Kesters K. 1994a; Analysis of electrophoretic whole organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics . 493 Goodfellow M., O’Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  38. Pot B., Devriese L. A., Hommez J., Miry C., Vandemeulebroecke K., Kersters K., Haesebrouck F. 1994b; Characterization and identification of Vagococcus fluvialis strains isolated from domestic animals. J Appl Bacteriol 11:362–369
    [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad SciUSA 74:5463–5467
    [Google Scholar]
  40. Takizawa S., Kojima S., Tamura S., Fujinaga S., Benno Y., Nakase T. 1994; Lactobacillus kefirgranum sp. nov. and Lactobacillus parakefir sp. nov., two new species from kefir grains. Int J Syst Bacteriol 44:435–439
    [Google Scholar]
  41. Thomson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific, gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  42. Vauterin L., Vauterin P. 1992; Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur J Microbiol 1:37–41
    [Google Scholar]
  43. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  44. Yumoto I., Ikeda K. 1995; Direct fermentation of starch to l( + ) lactic acid using Lactobacillus amvlophilus . Biotechnol Lett 17:543–546
    [Google Scholar]
  45. Zhang D. X., Cheyran M. 1991; Direct fermentation of starch to lactic acid by Lactobacillus amvlovorus . Biotechnol Lett 13:733–738
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1101
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1101
Loading

Data & Media loading...

Most cited Most Cited RSS feed