1887

Abstract

Three strains of novel, extremely thermophilic, rod-shaped crenarchaeotes were isolated from acidic hot spring areas in Japan. Cells of the three strains were straight or slightly curved rods and occasionally branched out singly or extensively, or had spherical bodies protruding at the ends of the cells. They were heterotrophs that grew anaerobically or microaerobically. The presence of CO in the gas phase, archaeal cell-extracts and a vitamin mixture stimulated growth of the strains. Growth occurred at 45-82 °C and pH 2.6-5.9 and was optimal around 75 °C and pH 4.0. The strains utilized glycogen, starch, gelatin and various proteinaceous complex compounds as carbon sources. They required sulfur, thiosulfate or L-cystine as possible electron acceptors. The lipids mainly consisted of various cyclic glycerol-bisdiphytanyl-glycerol tetraethers. The G+C contents of the genomic DNAs were 52 mol%. Comparison of the 16S rDNA sequences indicated that they belonged to a separate lineage in the family . The three strains were included in a single species due to high levels of DNA-DNA hybridization values. Based upon these results, the new isolates were assigned to a new genus and species in the family gen. nov., sp. nov. The type strain is IC-125(= JCM 10088).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-879
1998-07-01
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-879.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-879&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Miroshnichenko M. L., Kostrikina N. A., Chernych N. A., Zavarzin G. A. 1990; Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archae- bacterium from Kamchatka continental hot springs. Arch Microbiol 154:556–559
    [Google Scholar]
  4. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68
    [Google Scholar]
  5. Bruggraf S., Huber H., Stetter K. O. 1997; Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  8. Fiala G., Stetter K. O., Jannasch H. W., Langworthy T. A., Madon J. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Microbiol 8:106–113
    [Google Scholar]
  9. Hershberger K., L„ Barns S. M., Reysenbach A. L., Dawson S. C., Pace N. R. 1996; Wide diversity of Crenarchaeota. Nature 384:420
    [Google Scholar]
  10. Huber R., Stetter K. O. 1992; The order Thermoproteales. In The Prokaryotes, 2nd edn pp. 677–683 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  11. Huber R., Langworthy T. A., Kfinig H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333
    [Google Scholar]
  12. Huber R., Kristjansson J. K., Stetter K. O. 1987; Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archae- bacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101
    [Google Scholar]
  13. Ross H. N. M., Grant W. D., Harris I. E. 1985; Lipids in archaebacterial taxonomy. In Chemical Methods in Bacterial Systematics pp. 289–300 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  15. Segerer A. H., Stetter K. O. 1992; The order Sulfolobales. In The Prokaryotes, 2nd edn pp. 6841–701 Edited by Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  16. Stetter K. O. 1996; Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158
    [Google Scholar]
  17. Tamaoka J. 1994; Determination of DNA base composition. In Chemical Methods in Prokaryotic Systematics pp. 463–470 Edited by Goodfellow M., O’Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–1680
    [Google Scholar]
  19. Trincon A., de Rosa M., Gambacorta A., Lanzotti V., Nicolaus B., Harris J. E., Grant W. D. 1988; A simple chromatographic procedure for the detection of cyclized archaebacterial glycerol- bisdiphytanyl-glycerol tetraether core lipids. J Gen Microbiol 134:3159–3163
    [Google Scholar]
  20. Vttlkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  21. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310
    [Google Scholar]
  22. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579
    [Google Scholar]
  23. Woese C. R., Achenbach L., Rouviere P., Mandelco L. 1991; Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition- induced artifacts. Syst Appl Microbiol 14:364–371
    [Google Scholar]
  24. Zehnder A. J. B., Wuhrmann K. 1976; Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166
    [Google Scholar]
  25. Zeikus J. G. 1977; The biology of methanogenic bacteria. Bacteriol Rev 41:514–541
    [Google Scholar]
  26. Zillig W. 1989; Genus I. Thermoproteus Zillig and Stetter 1982, 267vp. In Bergey‘s Manual of Systematic Bacteriology vol. 3 pp. 2241 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  27. Zillig W., Stetter K. O., Schafer W., Janekovic D., Wunderl S., Holz I., Palm P. 1981; Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentbl Bakteriol Mikrobiol Hyg 1 Abt Orig C 2:205–227
    [Google Scholar]
  28. Zillig W., Gierl A., Schreiber G., Wunderl S., Janekovic D., Stetter K. O., Klenk H. P. 1983; The archaebacterium Thermofilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-48-3-879
Loading
/content/journal/ijsem/10.1099/00207713-48-3-879
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error