gen. nov., sp. nov., a new Gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions Free

Abstract

A denitrifier micro-organism was isolated from an upflow denitrifying filter inoculated with an activated sludge. The cells were Gram-negative, catalase-and oxidase-positive curved rods and very motile. They were aerobic as well as anoxic heterotrophs that had an atypical respiratory type of metabolism in which oxygen and nitrogen oxides were used simultaneously as terminal electron acceptors. The G+C content was 65 mol%. Our isolate was phenotypically similar to , according to classical systematic classification systems. However, a phylogenetic analysis based on the 16S rRNA sequence showed that the aerobic denitrif could not be assigned to any currently recognized genus. For these reasons a new genus and species, gen. nov., sp. nov., is proposed, for which SGLY2is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-775
1998-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-775.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-775&mimeType=html&fmt=ahah

References

  1. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. 1996; The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559
    [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K.-H. 1995; Phylo-genetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  3. Amann R. I. 1995; In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual1–15 Akkermans A. D., van Elsas J. D., de Bruijn F. J. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  4. Boehringer Mannheim. 1995 The DIG System User's Guide for Filter Hybridization
    [Google Scholar]
  5. Brosius J., Dull T. L., Sleeter D. D., NoIler H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  7. Godon J. J., Zumstein E., Dabert P., Habouzit F., Moletta R. 1997; Molecular microbial diversity in an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813
    [Google Scholar]
  8. Grimes D. J., Woese C. R., MacDonell M. T., Colwell R. R. 1997; Systematic study of the genus Vogesella gen. nov. and its type species, Vogesella indigofera comb. nov. Int J Syst Bacteriol 47:19–27
    [Google Scholar]
  9. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. (editors) 1994 Bergey’s Manual of Determinative Bacteriology, 9. Baltimore: Williams & Wilkins;
    [Google Scholar]
  10. Higgins D. G., Bleasby A. J., Fuchs R. 1992; clustal v: Improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191
    [Google Scholar]
  11. John P. 1977; Aerobic and anaerobic bacterial respiration monitored by electrodes. J Gen Microbiol 98:231–238
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism21–132 Munro H. M. New York: Academic Press;
    [Google Scholar]
  13. Magee C. M., Rodeheaver G., Edgerton R. F. 1975; A more reliable Gram staining technique for diagnosis of surgical infections. Am J Surg 130:341–346
    [Google Scholar]
  14. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  15. Patureau D., Davison J., Bernet N., Moletta R. 1994; Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. FEMS Microbiol Ecol 14:71–78
    [Google Scholar]
  16. Patureau D., Bernet N., Moletta R. 1995; Study of the denitrifying enzymatic system of Comamonas sp., strain SGLY2, under various aeration conditions with a particular view on nitrate and nitrite reductases. Curr Microbiol 32:25–32
    [Google Scholar]
  17. Patureau D., Bernet N., Moletta R. 1995; Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp. strain SGLY2. J Ind Microbiol 16:124–128
    [Google Scholar]
  18. Patureau D., Bernet N., Moletta R. 1995; Combined nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Comamonas sp. strain SGLY2. Water Res 31:1363–1370
    [Google Scholar]
  19. Raskin L., Poulsen L. K., Noguera D. R., Rittmann B. E., Stahl D. 1994; Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60:1241–1248
    [Google Scholar]
  20. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212
    [Google Scholar]
  21. Robertson L. A., Van Niel E. W. J., Torresmans R. A. M., Kuenen J. G. 1988; Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl Environ Microbiol 54:2812–2818
    [Google Scholar]
  22. Robertson L. A., Cornelisse R., De Vos P., Hadioetomo R., Kuenen J. G. 1989; Aerobic denitrification in various heterotrophic nitrifiers. Antonie Leeuwenhoek 56:289–299
    [Google Scholar]
  23. Robertson L. A., Dalsgaard T., Revsbech N. P., Kuenen J. G. 1995; Confirmation of ‘aerobic denitrification’ in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol Ecol 18:113–120
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Stahl D. A., Amann R. I. 1991; Development and application of nucleic acid probes in bacterial systematics. In Sequencing and Hybridization Techniques in Bacterial Systematics205–248 Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  27. Tamaoka J., Ha D. M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Coma- monas testosteroni comb. nov., with an emended description of the genus Comamonas. Int J Syst Bacteriol 37:52–59
    [Google Scholar]
  28. Wagner M., Rath G., Amann R., Koops H.-P., Schleifer K.-H. 1995; In situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18:251–264
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-775
Loading
/content/journal/ijsem/10.1099/00207713-48-3-775
Loading

Data & Media loading...

Most cited Most Cited RSS feed