1887

Abstract

A thermophilic, anaerobic, strictly autotrophic, sulphur-reducing bacterium, designated BSA(T = type strain), was isolated from a deep-sea hydrothermal chimney sample collected at the mid-Atlantic ridge. Gram-negative cells occurred singly or in pairs as small highly motile rods. Spores were not observed. The temperature range for growth was 40 to 75°C, with an optimum at 70 °C. The pH range for growth at 70 °C was from 4·4 to 7·5, with an optimum around 6·0. The sea salt concentration range for growth was 15-70 g Iwith an optimum at 35 g I. Elemental sulphur, thiosulphate and sulphite were reduced to hydrogen sulphide. Sulphate and cystine were not reduced. The G+C content of the genomic DNA was 35 mol%. Phylogenetic analyses of the 16S rRNA gene indicated that the strain was a member of the domain and formed a branch that was almost equidistant from members of the orders and The new organism possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, it is proposed that this isolate should be described as a member of a novel species of a new genus, gen. nov., of which sp. nov. is the type species. The type strain is BSA(= DSM 11699).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-701
1998-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-701.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-701&mimeType=html&fmt=ahah

References

  1. Alfredsson G. A., Kristjansson J. K., Hjörleifsdöttir S., Stetter K. O. 1988; Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J Gen Microbiol 134:299–306
    [Google Scholar]
  2. Antoine E., Cilia V., Meunier J. R., Guezennec J., Lesongeur F., Barbier G. 1997; Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the Southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123
    [Google Scholar]
  3. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane- sulfonic acid (HS-CoM)-dependent growth of Methano- bacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  4. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., NoIler H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  6. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. 1992; A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15:352–356
    [Google Scholar]
  7. Carballeira N. M., Reyes M., Sostre A., Huang H., Verhagen M. F. J. M., Adams M. W. 1997; Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima. J Bacteriol 179:2766–2768
    [Google Scholar]
  8. Charbonnier F., Forterre P. 1994; Comparison of plasmid DNA topology among mesophilic and thermophilic eubacteria and archaebacteria. J Bacteriol 176:1251–1259
    [Google Scholar]
  9. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458
    [Google Scholar]
  10. Conn H. J., Bartholomew J. W., Jennison M. W. 1957; Staining methods. In Manual of Microbial Methods30–36 Edited by Society of American Bacteriologists New York: McGraw-Hill;
    [Google Scholar]
  11. De Rosa M., Gambacorta A. 1994; Archaeal lipids. In Chemical Methods in Prokaryotic Systematics197–264 Goodfellow M., O’Donnell A. G. New York: Wiley;
    [Google Scholar]
  12. Doddrell D. M., Pegg D. T., Bendall M. R. 1982; Distortionless enhancement of NMR signals by polarization transfer. J Magn Reson 48:323–327
    [Google Scholar]
  13. Felsenstein J. 1993; phylip (phylogeny interference package), version 3.5c. Seattle: University of Washington;
    [Google Scholar]
  14. Ferrante G., Ekiel I., Patel G. B., Sprott D. 1988; Structure of the major polar lipids isolated from the aceticlastic methanogen, Methanothrix concilii GP6. Biochim Biophys Acta 963:162–172
    [Google Scholar]
  15. Galtier N., Gouy M., Gautier C. 1996; SeaView and Phylo- win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548
    [Google Scholar]
  16. Harmsen H. J. M., Prieur D., Jeanthon C. 1997a; Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichments of thermophilic subpopulations. Appl Environ Microbiol 63:28762883
    [Google Scholar]
  17. Harmsen H. J. M., Prieur D., Jeanthon C. 1997b; Groupspecific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol 63:4061–4068
    [Google Scholar]
  18. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228
    [Google Scholar]
  19. Huber R., Stetter K. O. 1992; The order Thermotogales. In The Prokaryotes, 2.3809–3815 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  20. Huber R., Langworthy T. A., Konig H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333
    [Google Scholar]
  21. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov. represents a new genus of thermophilic eubacteria within the 'Thermotogales'. Syst Appl Microbiol 12:32–37
    [Google Scholar]
  22. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘ Thermo-togales'. Arch Microbiol 154:105–111
    [Google Scholar]
  23. Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., König H., Rachel R., Rockinger I., Fricke H., Stetter K. O. 1992; Aquifex pyrophilus gen. nov., sp. nov. represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacterium. Syst Appl Microbiol 15:340–351
    [Google Scholar]
  24. Huelsenbeck J. P., Hillis D. M. 1993; Success of phylogenetic methods in the four-taxon case. Syst Biol 42:247–264
    [Google Scholar]
  25. Ingvorsen K., Jorgensen B. B. 1979; Combined measurement of oxygen and sulfide in water samples. Limnol Oceanogr 24:390–393
    [Google Scholar]
  26. Jannasch H. W. 1995; Microbial interactions with hydrothermal fluids. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (Geophysical monograph 91)273–296 Humphris S. E., Zierenberg R. A., Mullineaux L. S., Thomson R. E. Washington, DC: American Geophysical Union;
    [Google Scholar]
  27. Jannasch H. W., Huber R., Belkin S., Stetter K. O. 1988; Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104
    [Google Scholar]
  28. Jeanthon C., Reysenbach A. L., L'Haridon S., Gambacorta A., GIénat P., Pace N. R., Prieur D. 1995; Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a oil reservoir. Arch Microbiol 164:91–97
    [Google Scholar]
  29. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983; Methanococcus jannaschii, sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261
    [Google Scholar]
  30. Jones W. J., Stugard C. E., Jannasch H. W. 1989; Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151:214–318
    [Google Scholar]
  31. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1984; Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34:5–10
    [Google Scholar]
  32. Kim J. 1993; Improving the accuracy of phylogenetic estimation by combining different methods. Syst Biol 42:331–340
    [Google Scholar]
  33. Kurr M., Huber R., König H., Jannasch H. W., Fricke H., Trincone A., Kristjansson J. K., Stetter K. O. 1991; Methano- pyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247
    [Google Scholar]
  34. Langworthy T. A., Pond J. L. 1986; Membranes and lipids of thermophiles. In Thermophiles: General, Molecular, and Applied Microbiology107–135 Brock T. D. New York: Wiley;
    [Google Scholar]
  35. L'Haridon S., Reysenbach A. L., GIénat P., Prieur D., Jeanthon C. 1995; Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224
    [Google Scholar]
  36. Manaia C. M., Hoste B., Gutierrez M. C., Gillis M., Ventosa A., Kersters K., Da Costa M. S. 1994; Halotolerant Thermus strains from marine and terrestrial hot springs belong to Thermus thermophilus (ex Oshima and Imahori, 1974) nom. rev. emend. Syst Appl Microbiol 17:526–532
    [Google Scholar]
  37. Marmur J., Doty D. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  38. Marteinsson V. T., Birrien J.-L., Kristjansson J. K., Prieur D. 1995; First isolation of thermophilic aerobic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 18:163–174
    [Google Scholar]
  39. Marteinsson V. T., Birrien J.-L., Jeanthon C., Prieur D. 1996; Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol Ecol 21:255–266
    [Google Scholar]
  40. Marteinsson V. T., Birrien J.-L., Prieur D. 1997; In situ enrichment and isolation of thermophilic microorganisms from deep-sea hydrothermal environments. Can J Microbiol 43:694–697
    [Google Scholar]
  41. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  42. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec, nov., a new chemo- organotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69
    [Google Scholar]
  43. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes, 2.926–940 Starr M., Stolp H., Trüper H. G., Balows A., Schlegel H. G. New York: Springer;
    [Google Scholar]
  44. Pitulle C., Yang Y., Marchiani M., Moore E. R. B., Siefert J. L., Aragno M., Jurtshuk P. Jr., Fox G. E. 1994; Phylogenetic position of the genus Hydrogenobacter. Int J Syst Bacteriol 44:620–626
    [Google Scholar]
  45. Prieur D., Erauso G., Jeanthon C. 1995; Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122
    [Google Scholar]
  46. Reysenbach A.-L., Wickham G. S., Pace N. R. 1994; Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119
    [Google Scholar]
  47. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  48. Sambrook J., Fritch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Sleytr U. B., Messner P., Pum D. 1988; Analysis of crystalline bacterial surface layers by freeze-etching, metal-shadowing, negative staining and ultrathin sectioning. Methods Microbiol 20:29–60
    [Google Scholar]
  50. Sleytr U. B., Messner P., Pum D., Sára D. 1996 Crystalline Bacterial Cell Surface Proteins London: Academic Press;
    [Google Scholar]
  51. Soriente A., Sodano G., Gambacorta A., Trincone A. 1992; Structure of the ‘heterocyst glycolipids’ of the marine cyanobacterium Nodularia harveyana. Tetrahedron 48:5375–5384
    [Google Scholar]
  52. Stetter K. O. 1996; Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158
    [Google Scholar]
  53. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745
    [Google Scholar]
  54. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfatereducing bacteria. In The Prokaryotes, 2.3352–3378 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  55. Windberger E., Huber R., Trincone A., Fricke H., Stetter K. O. 1989; Thermotoga thermarum sp. nov. and Thermotoga nea- politana occurring in African continental solfataric springs. Arch Microbiol 151:506–512
    [Google Scholar]
  56. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  57. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domain Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579
    [Google Scholar]
  58. Zhao H., Wood A. G., Widdel F., Bryant M. P. 1988; An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmid. Arch Microbiol 150:178–183
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-701
Loading
/content/journal/ijsem/10.1099/00207713-48-3-701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error