1887

Abstract

Several yeast species/isolates belonging to the genus were examined for the organization of their mtDNAs and ability to generate petite mutants. A general characteristic for all of the mtDNAs tested was that they were very A+T-rich. However, restriction patterns and inducibility of petite mutations revealed a great diversity in the organization and genetic behaviour of mtDNAs. One group of yeasts, , contains mtDNA ranging in size from 64 to 85 kb. mtDNAs from these yeasts contain a high number of restriction sites that are recognized by the enzymes and , which cut specifically in G+C clusters. There are three to nine per genome. These yeasts spontaneously generate respiration deficient mutants. Ethidium bromide (Et-Br), at low concentrations, induces a majority of cells to give rise to petites. A second group of yeasts, , contains smaller mtDNAs, ranging in size from 23 to 48 kb, and probably only a few intergenic G+C clusters and no sequences. These yeasts also generate petite clones spontaneously, but Et-Br, even when present at high concentrations, does not substantially increase the frequency of petites. In most petite clones from these yeasts only a small fragment of the wild-type molecule is retained and apparently multiplied. A third group, represented by , does not give rise to petite mutants either or after induction.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-1015
1998-07-01
2023-02-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-1015.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-1015&mimeType=html&fmt=ahah

References

  1. Barnett J. A. 1992; The taxonomy of the genus Saccharomyces Meyen ex Reess: a short review for nontaxonomists. Yeast 81–23
    [Google Scholar]
  2. . Bernardi G. 1979; The petite mutation in yeast. Trends Biochem Sei 4197–201
    [Google Scholar]
  3. Bingham C. G., Nagley P. 1983; A petite mitochondrial DNA segment arising in exceptional high frequency in a mit- mutant of Saccharomyces cerevisiae . Biochim Biophys Acta 74088–98
    [Google Scholar]
  4. Blanc H., Dujon B. 1980; Replicator regions of the yeast mitochondrial DNA responsible for suppressiveness. Proc Natl Acad Sei USA 773942–3946
    [Google Scholar]
  5. Clark-Walker G. D. 1985; Basis of diversity in mitochondrial DNAs. In The Evolution of Genome Size, pp 277–297 Edited by Cavalier-Smith T. London: Wiley;
    [Google Scholar]
  6. Clark-Walker G. D., McArthur C. R., Daley D. J. 1981; Does mitochondrial DNA length influence the frequency of spontaneous petite mutants in yeasts?. Curr Genet 47–12
    [Google Scholar]
  7. Clark-Walker G. D., McArthur C. R., Sriprakash K. S. 1983; Order and orientation of genic sequences in circular mitochondrial DNA from Saccharomyces exiguus: implications for evolution of yeast mtDNAs. J Mol Evol 19333–341
    [Google Scholar]
  8. Dieckmann C. L., Gandy B. 1987; Preferential recombination between GC clusters in yeast mitochondrial DNA. EM BO J 64197–4203
    [Google Scholar]
  9. Dujon B. 1981; Mitochondrial genetics and functions. In The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance pp 505–635 Edited by Strathern J. N., Jones E. W., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  10. Evans R. J., Oakley K. M., Clark-Walker G. D. 1985; Elevated levels of petite formation in strains of Saccharomyces cerevisiae restored to respiratory competence. I. Association of both high and moderate frequencies of petite mutant formation with the presence of aberrant mitochondrial DNA. Genetics 111389–402
    [Google Scholar]
  11. Fangman W., L, Henly J. W., Churchill G., Brewer B. J. 1989; Stable maintenance of a 35-base-pair yeast mitochondrial genome. Mol Cell Biol 91917–1921
    [Google Scholar]
  12. Faugeron-Fonty G., Goyon C. 1985; Polymorphic variations in the ori sequences from the mitochondrial genomes of different wild-type yeast strains. Curr Genet 10269–282
    [Google Scholar]
  13. Ferguson L. R., von Borstel R. C. 1992; Induction of the cytoplasmic ‘petite’ mutation by chemical and physical agents in Saccharomyces cerevisiae . Mutat Res 265103–148
    [Google Scholar]
  14. Gingold E. B. 1988; The replication and segregation of yeast mitochondrial DNA. In Division and Segregation of Organelles (Society for Experimental Biology Seminar Series vol 35 pp 149–170 Edited by Boffey S. A., Lloyd D. Cambridge: Cambridge University Press;
    [Google Scholar]
  15. Goffeau A., Barrell B. G., Bussey H. 13 other authors 1996; Life with 6000 genes. Science 274546–567
    [Google Scholar]
  16. Hall R. M., Trembath M. K., Linnane A. W., Wheelis L., Criddle R. S. 1976; Factors affecting petite induction and the recovery of respiratory competence in yeast cells exposed to ethidium bromide. Mol Gen Genet 144253–262
    [Google Scholar]
  17. Hansen J., Kielland-Brandt M. C. 1994; Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from S. cerevisiae and S . monacensis. Gene 14033–10
    [Google Scholar]
  18. James S.A., Cai J., Roberts I. N., Collins M. D. 1997; A phylogenetic analysis of the genus Saccharomyces based on 18S rRNA gene sequences: description of Saccharomyces kunashirensis sp. nov. and Saccharomyces martiniae sp. nov. Int J Syst Bacteriol 47453–460
    [Google Scholar]
  19. Kielland-Brandt M., Nilsson-Tillgren T., Gjermansen C., Holmberg S., Pedersen M. B. 1995; Genetics of brewing yeasts. In The Yeasts, vol 6 pp 223–254 Edited by Rose A. H., Wheals A. E., Harrison J. S. London: Academic Press;
    [Google Scholar]
  20. Kurtzman C. P., Robnett C. J. 1991; Phylogenetic relationship among species of Saccharomyces, Schizo- saccharomyces, Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequences. Yeast 761–72
    [Google Scholar]
  21. Mandel M., Schildkraut C. L., Marmur L. 1968; Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B184–195
    [Google Scholar]
  22. Ogur M., John S. T. R., Nagai S. 1957; Tétrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125928–929
    [Google Scholar]
  23. Okamoto K., Suzuki K., Yoshida K. 1991; Physical mapping and RFLP analysis of mtDNAs from the ascosporogenous yeast : Saccharomyces exiguus, S. kluyveri and Hansenula wingei . Jpn J Genet 66709–718
    [Google Scholar]
  24. Pedersen M. B. 1986; DNA sequence polymorphism in the genus Saccharomyces. IV. Homologous chromosomes III in Saccharomyces bay anus, S. carlsbergensis, and S . uvarum. Carlsberg Res Commun 51185–202
    [Google Scholar]
  25. Piškur J. 1988; Transmission of yeast mitochondrial loci to progeny is reduced when nearby intergenic regions containing ori/rep sequences are deleted. Mol Gen Genet 214425–432
    [Google Scholar]
  26. Piškur J. 1989a; Transmission of the yeast mitochondrial genome to progeny: the impact of intergenic sequences. Mol Gen Genet 218161–168
    [Google Scholar]
  27. Piškur J. 1989b; Respiratory-competent yeast mitochondrial DNAs generated by deleting intergenic region. Gene 81165–168
    [Google Scholar]
  28. Piškur J. 1994; Inheritance of the yeast mitochondrial genome. Plasmid 31229–241
    [Google Scholar]
  29. Prunell A., Kopecka H., Strauss F., Bernardi G. 1977; The mitochondrial genome of wild-type yeast cells. V. Genome evolution. J Mol Biol 11017–52
    [Google Scholar]
  30. Ragnini A., Fukuhara H. 1988; Mitochondrial DNA of the yeast Kluyveromyces: guanine-cytosine rich sequence clusters. Nucleic Acids Res 168433–8442
    [Google Scholar]
  31. Rayko E., Goursot R., Cherif-Zahar B., Melis R., Bernardi G. 1988; Regions flanking ori sequences affect replication efficiency of the mitochondrial genome of orz'-plus petite mutant from yeast. Gene 63213–226
    [Google Scholar]
  32. Sanders J. P. M., Heyting C., Ph. Verbeet M., Meijlink F. C. P. W., Borst P. 1977; The organization of genes in yeast mitochondrial DNA. III. Comparison of the physical maps of the mitochondrial DNAs from three wild-type Saccharomyces strains. Mol Gen Genet 157239–261
    [Google Scholar]
  33. Sor F., Fukuhara H. 1983; Unequal excision of complementary strands is involved in the generation of palindromic repetitions of rho- mitochondrial DNA in yeast. Cell 32391–396
    [Google Scholar]
  34. Tian G.-L, Macadre C., Kruszewska A. 7 other authors 1991; Incipient mitochondrial evolution in yeasts. I. The physical map and gene order of Saccharomyces douglasii mitochondrial DNA discloses a translocation of a segment of 15000 base-pairs and the presence of new introns in comparison with Saccharomyces cerevisiae . J Mol Biol 218735–746
    [Google Scholar]
  35. Vaughan-Martini A., Martini A., Cardinali G. 1993; Electrophoretic karyotyping as a taxonomic tool in the genus Saccharomyces . Antonie Leeuwenhoek 63145–156
    [Google Scholar]
  36. Wolf K., Del Guidice L. 1988; The variable mitochondrial genome of Ascomycetes: organization, mutational alterations, and expression. Adv Genet 25185–308
    [Google Scholar]
  37. de Zamaroczy M., Bernardi G. 1985; Sequence organization of the mitochondrial genome of yeast-a review. Gene 371–17
    [Google Scholar]
  38. de Zamaroczy M., Bernardi G. 1986; The GC clusters of the mitochondrial genome of yeast and their evolutionary origin. Gene 411–22
    [Google Scholar]
  39. de Zamaroczy M., Faugeron-Fonty G., Bernardi G. 1983; Excision sequences in the mitochondrial genome of yeast. Gene 21193–202
    [Google Scholar]
  40. de Zamaroczy M., Marotta R., Faugeron-Fonty G., Goursot R., Mangin M., Baldacci G., Bernardi G. 1981; The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity. Nature 29275–78
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-1015
Loading
/content/journal/ijsem/10.1099/00207713-48-3-1015
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error