1887

Abstract

Two strains of moderately thermophilic bacteria, which reduce elemental sulfur to hydrogen sulfide, were isolated from volcanic sources in Kamchatka. Strain K-119was obtained from a thermophilic microbial community associated with Thermothrix thiopara, and strain U–8was isolated from a cyanobacterial mat inhabiting a sulfide-rich hot spring. Cells of both strains are short Gram-negative rods, motile with one polar flagellum (strain K–119) or non-motile (strain U–8). Both strains are obligate anaerobes, have temperature optima of 54–55 °C and pH optima of 6.9-7.2. Molecular hydrogen, acetate, fumarate, malate, pyruvate, lactate and long-chain saturated fatty acids served as growth substrates for both species; strain U-8was also able to grow on propionate. All substrates were oxidized completely, HS and CO being the only metabolic products. Elemental sulfur was obligately required for growth of strain K–119, whereas strain U-8was able to grow also with thiosulfate as electron acceptor and on pyruvate without an external electron acceptor. The DNA G+C contents of strains K–119and U–8were 31.6 and 32.2 mol%, respectively. Phenotypic features and the results of 16S rRNA sequencing indicate the affiliation of the new isolates to the genus . The DNA-DNA hybridization with Desulfurella acetivorans was 40% for strain K–119and 55% for strain U-8; the DNA-DNA hybridization between the new isolates was 32%. Based on the results of morphological, physiological and phylogenetic studies the following two new species are proposed: sp. nov. with the type strain K–119(= DSM 10409) and Desulfurella propionica sp. nov. with the type strain U–8(=DSM 10410).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-2-475
1998-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/2/ijsem-48-2-475.html?itemId=/content/journal/ijsem/10.1099/00207713-48-2-475&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum G. E., Woese C. R., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A. 1994; Bacterial sulfur reduction in hot vents. FEMS Microbiol Rev 15:65–67
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov., sp. nov. - a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155
    [Google Scholar]
  4. Bonch-Osmolovskaya E. A., Miroshnichenko M. L, Chernyh N. A., Kostrikina N. A., Pikuta E. V., Rainey F. A. 1997; Reduction of elemental sulfur by moderately thermophilic organotrophic bacteria and characterization of Thermo- anaerobacter sulfurophylus sp. nov. Microbiology (English translation of Mikrobiologiyd) 66:581–587
    [Google Scholar]
  5. Caldwell D. E., Caldwell S. J., Laycock J. P. 1976; Thermothrix thiopara gen. and sp. nov., a facultatively anaerobic, facultative chemolithotroph, living at neutral pH and high temperature. Can J Microbiol 22:1509–1517
    [Google Scholar]
  6. Jannsen P., Morgan H. W. 1992; Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3Bl. FEMS Microbiol Lett 96:213–218
    [Google Scholar]
  7. Liesak W., Finster K. 1994; Phylogenetic analysis of five strains of Gram-negative, obligately anaerobic sulfurreducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kisingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758
    [Google Scholar]
  8. Miroshnichenko M. L., Gongadze G. M., Lysenko A. M., Bonch-Osmolovskaya E. A. 1993; Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago). Arch Microbiol 161:88–93
    [Google Scholar]
  9. Pfennig N., Biebl H. 1976; Desulfuromonas acetooxidans gen. nov. and sp. nov., a new anaerobic sulfur-reducing acetate-oxidizing bacterium. Arch Microbiol 110:3–12
    [Google Scholar]
  10. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stacke-brandt E. 1996; The genus Nocar diopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092
    [Google Scholar]
  11. Rainey F. A., Toalster R., Stackebrandt E. 1993; Desulfurella acetivorans, a thermophilic, acetate-oxidizing and sulfur-reducing organism, represents a distinct lineage within the Proteobacteria. Syst Appl Microbiol 16:373–379
    [Google Scholar]
  12. Ravot G., Ollivier B., Patel B. K. C., Magot M., Garcia J.-L. 1996; Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. Int J Syst Bacteriol 46:321–323
    [Google Scholar]
  13. Stetter K. O. 1996; Hyperthermophilicprokaryotes. FEMS Microbiol Rev 18:149–158
    [Google Scholar]
  14. TrUper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. J Microbiol Serol 30:225–232
    [Google Scholar]
  15. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  16. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chern 238:2882–2888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-2-475
Loading
/content/journal/ijsem/10.1099/00207713-48-2-475
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error