Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system Free

Abstract

A mesophilic, Gram-negative, rod-shaped, marine, propionate-oxidizing sulfate reducer (strain M16) was isolated from a water-oil separation system on a North Sea oil platform. The optimum conditions for growth were 31 °C, pH 6.8-7.2 and 1.5-2.0 %(w/v) NaCI and 0.1-0.3% (w/v) MgCl6HO in the medium. The growth yield with sulfate was 4.6 g cell biomass (mol propionate oxidized). Strain M16is nutritionally related to members of the genus Desulfobulbus, but differs in that it has no vitamin requirement and is able to utilize fumarate and malate as carbon and energy sources. Hydrogenase activity measured as hydrogen uptake was mainly membrane-bound and varied with the growth substrate. Highest activity [28 μmol min(mg protein)] was found in cells grown with hydrogen and lowest [50 nmol min(mg protein)] in cells grown with propionate as electron donors for sulfate reduction. Desulforubidin, menaquinone-5(H) and cytochromes of the c- and b-type were present. The fatty acid pattern was similar to that found for Desulfobulbus propionicus. The DNA base composition was 50.6 mol% G+C. Strain M16is equidistantly related to D. propionicus and Desulfobulbus elongatus with 96.1 % 16S rDNA similarity. On the basis of differences in genotypic, phenotypic and immunological characteristics, strain M16(= DSM 8777) is proposed as the type strain of a new species, Desulfobulbus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-2-469
1998-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/2/ijsem-48-2-469.html?itemId=/content/journal/ijsem/10.1099/00207713-48-2-469&mimeType=html&fmt=ahah

References

  1. Barth T., Riise M. 1992; Interactions between organic anions in formation waters and reservoir mineral phases. Org Geochem 19:455–482
    [Google Scholar]
  2. Beji A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli. Anal Biochem 162:18–23
    [Google Scholar]
  3. Christensen B., Torsvik T., Lien T. 1992; Immuno-magnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. ApplEnviron Microbiol 58:1244–1248
    [Google Scholar]
  4. Collins M. D., Widdel F. 1986; Respiratory quinones of sulfate-reducing and sulfur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18
    [Google Scholar]
  5. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved an precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 5:83–91
    [Google Scholar]
  6. De Ley J. 1970; Reexamination of the association between melting point, bouant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 54:738–754
    [Google Scholar]
  7. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  8. Devereux R., Mundfrom G. W. 1994; A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl Environ Microbiol 60:3437–3439
    [Google Scholar]
  9. Harmsen H. J., Akkermans A. D. L., Stams A. J. M., de Vos W. M. 1996; Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Appl Environ Microbiol 62:2163–2168
    [Google Scholar]
  10. Isaksen M. F., Teske A. 1996; Desulforhopalus vaculatus gen. nov., sp. nov., a new moderately psychrophilic sulfatereducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. Mammalian Protein Metabolism21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  13. Lee J., Yi C., LeGall J., Peck H. D. 1973; Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J Bacteriol 115:453–455
    [Google Scholar]
  14. Lien T., Beeder J. 1997; Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 47:1124–1128
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  16. Meretre T., Lien T. Unpublished
  17. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic Clostridia. FEMS Microbiol Lett 113:125–128
    [Google Scholar]
  18. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophilia: position and implications for the systematic of the order Spirochaetales. Syst Appl Microbiol 16:224–226
    [Google Scholar]
  19. Samain E., Dubourguier H. C., Albagnac G. 1984; Isolation and characterization of Desulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst Appl Microbiol 5:391–401
    [Google Scholar]
  20. Silhavy T. J., Berman M. L., Enquist L. W. 1984; Procedure 40. Phenol/chloroform extraction of DNA samples. Experiments with Gene Fusions177–179 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Smith L. 1978; Bacterial cytochromes and their spectral characterization. Methods Enzymol 53:202–212
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  23. Stams A. J. M., Kremer D. R., Weenk G. H., Hansen T. A. 1984; Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173
    [Google Scholar]
  24. Vance I., Brink D. E. 1994; Propionate-driven sulfatereduction by oil-field bacteria in a pressurized porous rock bioreactor. Appl Microbiol Biotechnol 40:920–925
    [Google Scholar]
  25. Voordouw G., Armstrong S. M., Reimer M. F., Fouts B., Telang A. J., Shen Y., Gevertz D. 1996; Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629
    [Google Scholar]
  26. Weston J. A., Knowles C. J. 1973; A soluble co-binding c-type cytochrome from the marine bacterium Beneckea natriegens. Biochim Biophys Acta 305:11–18
    [Google Scholar]
  27. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes, 2nd.3352–3378 Edited by Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. Berlin: Springer;
    [Google Scholar]
  28. Widdel F., Pfennig N. 1981; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. and sp. nov. Arch Microbiol 129:395–400
    [Google Scholar]
  29. Widdel F., Pfennig N. 1982; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131:360–365
    [Google Scholar]
  30. Widdel F., Kohring G. W., Mayer F. 1983; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. and sp. nov. and Desulfonema magnum sp. nov. Arch Microbiol 129:286–294
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-2-469
Loading
/content/journal/ijsem/10.1099/00207713-48-2-469
Loading

Data & Media loading...

Most cited Most Cited RSS feed