1887

Abstract

Thirty-three strains previously classified into 11 species in the bacterial family were subjected to phylogenetic analysis based on 16S rRNA sequences. The family formed a distinct clade consisting of four phylogenetic groups as judged from branch lengths, bootstrap values and signature nucleotides. Group I contained the classical moraxellae and strains of the coccal moraxellae, previously known as , with 16S rRNA similarity of ≥95%. A further division of group I into five tentative clusters is discussed. Group II consisted of two strains representing and . These strains were only distantly related to each other (93.4%) and also to the other members of the (≤93%). Therefore, reasons for reclassification of these species into separate and new genera are discussed. Group III harboured strains of the genus and strain 752/52 of . This strain of [.] formed an early branch from the group III line of descent. Interestingly, a distant relationship was found between strain ATCC 23333 (formerly classified as [.] ) and [.] strain 752/52, exhibiting less than 96% nucleotide similarity between their 16S rRNA sequences. The establishment of a new genus for [.] strain 752/52 is therefore suggested. Group IV contained only two strains of the genus . Strategies for the development of diagnostic probes and distinctive sequences for 16S rRNA-based species-specific assays within group I are suggested. Although these findings add to the classificatory placements within the , analysis of a more comprehensive selection of strains is still needed to obtain a complete classification system within this family.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-1-75
1998-01-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/1/ijs-48-1-75.html?itemId=/content/journal/ijsem/10.1099/00207713-48-1-75&mimeType=html&fmt=ahah

References

  1. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumani sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended descriptions of Acinetobacter calco- aceticus, and Acinetobacter lwoffi. Int J Syst Bacteriol 36:228–240
    [Google Scholar]
  2. Bowman J. P., Cavanagh J., Austin J. Y., Sanderson K. 1996; Novel Psychrobacter species from antarctic ornitho- genic soils. Int J Syst Bacteriol 46:841–848
    [Google Scholar]
  3. Brorson J. E., Falsen E., Ehle-Nilsson H., Rodjer S., Westin J. 1983; Septicemia due to Moraxella nonliquefaciens in a patient with multiple myeloma. Scand J Infect Dis 15:221–223
    [Google Scholar]
  4. Brosius J., Palmer J. L., Kennedy J. P., NoIler H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  5. Bøvre K. 1965; Studies on transformation In Moraxella and organisms assumed to be related to Moraxella. 5. Streptomycin resistance transformation between serum-liquefying, nonhaemolytic moraxellae, Moraxella bovis and Moraxella nonliquefaciens. Acta Pathol Microbiol Scand 45:435–449
    [Google Scholar]
  6. Bøvre K. 1979; Proposal to divide the genus Moraxella Lwoff 1939 emend. Henriksen and Bøvre 1968 into two subgenera, subgenus Moraxella (Lwoff 1939) Bøvre 1979 and subgenus Branhamella (Catlin 1970) Bøvre 1979. Int J Syst Bacteriol 29:403–406
    [Google Scholar]
  7. Bøvre K. 1984 Genus II Moraxella Lwoff 1939, 173 emend. Henriksen and Bøvre 1968, 391AL. In Bergey's Manual of Systematic Bacteriology 12297–2303 Krieg N. R., Holt J. B. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Bøvre K., Fuglesang J. E., Hagen N., Jantzen E., Frøholm L. O. 1976; Moraxella atlantae sp. nov. and its distinction from Moraxella phenylpyruvica. Int J Syst Bacteriol 26:511–521
    [Google Scholar]
  9. Bøvre K., Hagen N. 1980; The family Neisseriaceae: rodshaped species of the genera Moraxella, Acinetobacter, Kingella, and Neisseria, and the Branhamella group of cocci. In The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria 21506–1529 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer:
    [Google Scholar]
  10. Bøvre K., Henriksen S. D. 1967; A new Moraxella species, Moraxella osloensis, and a revised description of Moraxella nonliquefaciens. Int J Syst Bacteriol 17:127–135
    [Google Scholar]
  11. Bøvre K., Henriksen S. D. 1967; A revised description of Moraxella polymorpha Flamm 1957, with a proposal of a new name, Moraxella phenylpyruvica, for this species. Int J Syst Bacteriol 17:343–360
    [Google Scholar]
  12. Catlin B. W. 1964; Reciprocal genetic transformation between Neisseria catarrhalis and Moraxella nonliquefaciens. J Gen Microbiol 37:369–379
    [Google Scholar]
  13. Catlin B. W. 1970; Transfer of the organism named Neisseria catarrhalis to Branhamella gen. nov. Int J Syst Bacteriol 20:155–159
    [Google Scholar]
  14. Catlin B. W. 1990; Branhamella catarrhalis: an organism gaining respect as a pathogen. Clin Microbiol Rev 3:293–320
    [Google Scholar]
  15. Catlin B. W. 1991; Branhamaceae fam. nov., a new bacterial family to accomodate the genera Branhamella and Moraxella. Int J Syst Bacteriol 41:320–323
    [Google Scholar]
  16. Dewhirst F. E., Paster B. J., La Fontaine S., Rood J. I. 1990; Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb. nov.; and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int J Syst Bacteriol 40:426–433
    [Google Scholar]
  17. Enright M. C., Carter P. E., MacLean I. A., McKenzie H. 1994; Phylogenetic relationships between some members of the genera Neisseria, Acinetobacter, Moraxella, and Kingella based on partial 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 44:387–391
    [Google Scholar]
  18. Felsenstein J. 1978; Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410
    [Google Scholar]
  19. Felsenstein J. 1993 phylip: phylogeny inference package (version 3.51c). Department of Genetics University of Washington; Seattle:
    [Google Scholar]
  20. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  21. Gray M. W., Sankoff D., Cedergren R. J. 1984; On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 12:5837–5852
    [Google Scholar]
  22. Gutell R. R. 1994; Collection of small (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res 22:3502–3507
    [Google Scholar]
  23. Henriksen S. D. 1969; Proposal of a neotype strain for Moraxella lacunata. Int J Syst Bacteriol 19:263–265
    [Google Scholar]
  24. Henriksen S. D., Bøvre K. 1968; The taxonomy of the genera Moraxella and Neisseria. J Gen Microbiol 51:387–392
    [Google Scholar]
  25. Hughes D. E., Pugh G. W. Jr. 1970; A five-year study of bovine infectious keratoconjunctivitis in a beef herd. J Am Vet Med Assoc 157:443–454
    [Google Scholar]
  26. Hultman T., Bergh S., Moks T., Uhlén M. 1991; Bidirectional solid phase sequencing of in vitro-amplified plasmid DNA. BioTechniques 10:84–93
    [Google Scholar]
  27. Hultman T., Ståhl S., Hornes E., Uhlén M. 1989; Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res 17:4937–4946
    [Google Scholar]
  28. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  29. Juni E. 1972; Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous species. J Bacteriol 112:917–931
    [Google Scholar]
  30. Juni E. 1974; Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Appl Microbiol 27:16–24
    [Google Scholar]
  31. Juni E. 1991; The genus Psychrobacter. In The Pro-karyotes3241–3246 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer:
    [Google Scholar]
  32. Juni E., Heym G. A. 1980; Transformation assays for identification of psychrotrophic achromobacters. Appl En-viron Microbiol 40:1106–1114
    [Google Scholar]
  33. Juni E., Heym G. A. 1986; Psychrobacter immobilis gen. nov.: genospecies composed of Gram-negative, aerobic oxidase-positive coccobacilli. Int J Syst Bacteriol 36:388–391
    [Google Scholar]
  34. Juni E., Heym G. A., Newcomb R. D. 1988; Identification of Moraxella bovis by qualitative genetic transformation and nutritional assays. Appl Environ Microbiol 54:1304–1306
    [Google Scholar]
  35. Kodjo A., Tønjum T., Richard Y., Bøvre K. 1995; Moraxella caprae sp.nov., a new member of the classical moraxellae, with very close affinity to Moraxella bovis. Int J Syst Bacteriol 45:467–471
    [Google Scholar]
  36. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959
    [Google Scholar]
  37. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McGaughey M. J., Woese C. R. 1996; The ribosomal database project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  38. Martinez-Murcia A. J., Benlloch S., Collins M. D. 1992; Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol 42:412–421
    [Google Scholar]
  39. Olsen G. J., Woese C. R. 1993; Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123
    [Google Scholar]
  40. Pettersson B., Johansson K.-E., Uhlén M. 1994; Sequence analysis of 16S rRNA from mycoplasmas by direct solid phase DNA sequencing. Appl Environ Microbiol 60:2456–2461
    [Google Scholar]
  41. Pettersson B., Leitner T., Ronaghi M., Bölske G., Uhlén M., Johansson K.-E. 1996; The phylogeny of the Mycoplasma mycoides cluster as determined by sequence analysis of the 16S rRNA genes from the two rRNA operons. J Bacteriol 178:4131–4142
    [Google Scholar]
  42. Pettersson B., Lembke F., Hammer P., Stackebrandt E., Priest F. G. 1996; Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int Syst Bacterial 46:759–764
    [Google Scholar]
  43. Pettersson B., Uhlén M., Johansson K.-E. 1996; The phylogeny of some ruminant mycoplasmas based on 16S rRNA sequences and definition of a new cluster within the hominis group. Int Syst Bacterial 46:1093–1098
    [Google Scholar]
  44. Rainey F. A., Lang E., Stackebrandt E. 1994; The phylogenetic structure of the genus Acinetobacter. FEMS Microbiol Lett 124:349–354
    [Google Scholar]
  45. Ringvoid A., Vik E., Bevanger L. S. 1985; Moraxella lacunata isolated from epidemic conjunctivitis among teenaged females. Acta Ophthalmol 63:427–431
    [Google Scholar]
  46. Rossau R., Van Landschoot A., Gillis M., De Ley J. 1991; Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accomodate the genera Moraxella, Acinetobacter, and Psychrobacter and related organisms. Int Syst Bacterial 41:310–319
    [Google Scholar]
  47. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  48. Stackebrandt E. 1988; Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification system of the eubacteria. Can J Microbiol 34:552–556
    [Google Scholar]
  49. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria” and their relatives. Int Syst Bacterial 38:321–325
    [Google Scholar]
  50. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA- DNA reassociation and 16S rRNA sequence analysis in the present definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  51. Towner K. 1991; The genus Acinetobacter. In The Prokaryotes 43137–3143 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer:
    [Google Scholar]
  52. Tønjum T., Bukholm G., Bøvre K. 1989; Differentiation of some species of Neisseriaceae and other bacterial groups by DNA-DNA hybridization. APMIS 97:395–405
    [Google Scholar]
  53. Tønjum T., Caugant D. A., Bøvre K. 1992; Differentiation of Moraxella nonliquefaciens, M. lacunata and M. bovis by multilocus enzyme electrophoresis and hybridization with pilin-specific DNA probes. J Clin Microbiol 30:3099–3107
    [Google Scholar]
  54. Vandamme P., Gillis M., Vancanneyt M., Hoste B., Kersters K., Falsen E. 1993; Moraxella lincolnii sp. nov., isolated from the human respiratory tract, and re-evaluation of the taxonomic position of Moraxella osloensis. Int J Syst Bacteriol 43:474–481
    [Google Scholar]
  55. Van Landschoot A., Rossau R., De Ley J. 1986; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acinetobacter. Int J Syst Bacteriol 36:150–160
    [Google Scholar]
  56. Veron M., Lenvoise-Furet A., Coustere C., Ged C., Grimont F. 1993; Relatedness of three species of “false Neisseria”, Neisseria caviae, Neisseria cuniculi, and Neisseria ovis by DNA-DNA hybridizations and fatty acid analysis. Int J Syst Bacteriol 43:210–220
    [Google Scholar]
  57. Wahlberg J., Holmberg A., Bergh S., Huffman T., Uhlén M. 1992; Automated magnetic preparation of DNA templates for solid phase sequencing. Electrophoresis 13:547–551
    [Google Scholar]
  58. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  59. Yamamoto S., Harayama S. 1996; Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-48-1-75
Loading
/content/journal/ijsem/10.1099/00207713-48-1-75
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error