1887

Abstract

Two extremely thermophilic archaea, designated W-12 and P-4, were isolated from a geothermal vent in the tidal zone of Whale Island, New Zealand, and from geothermally heated bottom deposits of the Bay of Plenty, New Zealand, respectively. Cells of isolate W-12 are irregular cocci, 0·3--1·2 pm in diameter, motile with polar flagella. The cell envelope consists of one layer of subunits with a major protein of 75000. Cells produce protrusions of different kinds: prostheca-like, chains of bubbles, or network of fimbriae. Cells of isolate P-4 are regular cocci, 0·7--1·0 µm in diameter, motile with polar flagella. The cell envelope consists of two layers of subunits; its major protein has an of 56000. Both organisms are obligate anaerobes, fermenting peptides in the case of strain W-12, or peptides and starch in the case of P-4. Elemental sulfur is required for growth and is reduced to hydrogen sulfide. The optimal growth temperature of the new isolates is in the range 80-88 °C. The optimal growth pH is 6·5-7·2. The G+C content of the DNA of strain W-12 is 50·6 mol%, and of strain P-4 is 53·3 mol%. Based on physiological characteristics, 16S rDNA sequence comparison and DNA base composition, the new isolates were considered to be members of the genus The low level of DNA-DNA hybridization with the type strains of other species confirms the novel species status of the new isolates. The new isolates are described as sp. nov., with type strain W-12 (= DSM 10395), and sp. nov., with type strain P-4 (= DSM 10394).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-1-23
1998-01-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/1/ijs-48-1-23.html?itemId=/content/journal/ijsem/10.1099/00207713-48-1-23&mimeType=html&fmt=ahah

References

  1. Bonch-Osmolovskaya E. A., Stetter K. O. 1991; Interspecies hydrogen transfer in cocultures of thermophilic archaea. Syst Appl Microbiol 14:205–208
    [Google Scholar]
  2. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N.R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl AcadSci USA 91:1609–1613
    [Google Scholar]
  3. Erauso G., Reysenbach A.L., Godfroy A., Meunier J. R., Crump B., Partensky F., Baross J. A., Marteinsson V., Barbier G., Pace N. R., Prieur D. 1993; Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349
    [Google Scholar]
  4. Fiala G., Stetter K. O. 1986; Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archae- bacteria growing optimally at 100 °C. Arch Microbiol 145:56–61
    [Google Scholar]
  5. Fiala G., Stetter K. O., Jannasch H., Langworthy T., Madon J. 1986; Staphylothermus marinus sp. nov. repre-sents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Microbiol 8:106–113
    [Google Scholar]
  6. Gillespie S., Gillespie D. 1971; Ribonucleic acid- deoxyribonucleic acid hybridization in aqueous solutions and in solutions containing formamide. Biochem J 125:481–487
    [Google Scholar]
  7. Godfroy A., Meunier J.-R., Guezennec J., Lesongeur F., Raguenes G., Rimbault A., Barbier G. 1997; Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji basin. Int J Syst Bacteriol 46:1113–1119
    [Google Scholar]
  8. Gongadze G. M., Kostyukova A.Yu., Miroshnichenko M. L., Bonch-Osmolovskaya E. A. 1997; Regular proteinaceous layers of Thermococcus stetteri cell envelope. Curr Microbiol 27:5–9
    [Google Scholar]
  9. Gonzalez J. M., Kato C., Horikoshi K. 1995; Thermococcus peptonophilus sp. nov., a fast growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164
    [Google Scholar]
  10. Huber R., Stohr J., Honenhaus S., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1995; Thermococcus chitinophagus sp. nov., a novel, chitin-degrading, hyper-thermophilic archaeum from a deep-sea hydrothermal environment. Arch Microbiol 164:255–264
    [Google Scholar]
  11. Keller M., Braun F.-J., Dirmeieir R., Hafenbradl D., Burggraf S., Rachel R., Stetter K. O. 1995; Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395
    [Google Scholar]
  12. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K.L. 1994; Thermococcus profundus sp. nov. a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236
    [Google Scholar]
  13. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  14. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  15. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  16. Marteinsson V. T., Watrin L., Prieur D., Caprais J. C., Raguenes G., Erauso G. 1995; Phenotypic charac-terization, DNA similarities, and protein profiles of twenty sulfur-metabolizing hyperthermophilic anaerobic Archaea isolated from hydrothermal vents in the southern Pacific Ocean. Int J Syst Bacteriol 46:1113–1119
    [Google Scholar]
  17. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262
    [Google Scholar]
  18. Neuner A., Jannasch H. W., Belkin S., Stetter K. O. 1990; Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207
    [Google Scholar]
  19. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41:335–340
    [Google Scholar]
  20. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., Rachel R., Stetter K. O. 1991; Pyrodictium abyssi sp nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst Appl Microbiol 14:245–253
    [Google Scholar]
  21. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stacke-brandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092
    [Google Scholar]
  22. Staley J. T., Fuerst J. A. 1989 Budding and/or ap-pendaged bacteria. In Bergey's Manual of Systematic Bacteriology vol III pp 1890–1993 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. Baltimore: Williams & Wilkins;
    [Google Scholar]
  23. Stetter K. O., Konig H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disk-shaped sulfur-reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551
    [Google Scholar]
  24. Truper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. J Microbiol Serol 30:225–228
    [Google Scholar]
  25. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124
    [Google Scholar]
  26. Widdel F., Pfennig N. 1992 The genus Desulfuromonas and other gram-negative sulfur-reducing eubacteria. In The Prokaryotes,, 2nd edn.. vol 1 pp 3379–3389 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer Verlag;
    [Google Scholar]
  27. Zillig W., Holz I., Janekovic D., Schafer W., Reiter W. D. 1983; The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of archaebacteria. Syst Appl Microbiol 4:88–94
    [Google Scholar]
  28. Zillig W., Holz I., Janekovic D., Klenk H.-P., Imsel E., Trent J., Wunderl I., Forjaz V. H., Couyinho R., Ferreira T. 1991; Hyperthermus butilicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-48-1-23
Loading
/content/journal/ijsem/10.1099/00207713-48-1-23
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error