1887

Abstract

A strictly anaerobic bacterium, strain BT, from termite hindgut homogenates, was isolated in pure culture and grew on 3-hydroxybenzoate as sole source of carbon and energy. No other substrate tested was degraded, sulfate, sulfite, thiosulfate, nitrate, ferric iron, oxygen or fumarate were not reduced, and no electron transfer to partner organisms was observed. 3-Hydroxybenzoate was fermented to butyrate, acetate and CO. Benzoate was detected in the culture supernatant as an intermediate. The isolate was a slightly motile, endospore- forming Gram-positive rod; 16S rDNA sequence analysis revealed a high similarity to members of the genus Desulfotomaculum. The G+C content of the DNA was 48 mol %. Strain BT differs from the members of the genus Desulfotomaculum significantly due to its lack of dissimilatory sulfate reduction, and is therefore described as the type strain of a new genus and species, Sporotomaculum hydroxybenzoicum gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-1-215
1998-01-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/1/ijs-48-1-215.html?itemId=/content/journal/ijsem/10.1099/00207713-48-1-215&mimeType=html&fmt=ahah

References

  1. Bartholomew J. W. 1962; Variables influencing results, and precise definition of steps in gram staining as a means of standardizing the results obtained.. Stain Technol 37139–155
    [Google Scholar]
  2. Boll M., Fuchs G. 1995; Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism.. Eur J Biochem 234921–933
    [Google Scholar]
  3. Bonting C. F. C., Schneider S., Schmidtberg G., Fuchs G. 1995; Anaerobic degradation of m-cresol via methyl oxidation to 3-hydroxybenzoate by a denitrifying bacterium.. Arch Microbiol 16463–69
    [Google Scholar]
  4. Brackmann R., Fuchs G. 1993; Enzymes of anaerobic metabolism of phenolic compounds.. Eur J Biochem 213563–571
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biochem 72248–254
    [Google Scholar]
  6. Brauman A., Koenig J. F., Dutreix J., Garcia J. L. 1990; Characterization of two sulfate-reducing bacteria from the gut of the soil feeding termite Cubitermes sp.. Antonie Leeuwenhoek 58271–275
    [Google Scholar]
  7. Brune A., Schink B. 1990; Pyrogallol-to-phloroglucinol conversion and other hydroxyl transfer reactions catalyzed by cell extracts of Pelobacter acidigallici.. J Bacteriol 1721070–1076
    [Google Scholar]
  8. Brune A., Miambi E., Breznak J. A. 1995; Roles of oxygen and the intestinal microflora in the metabolism of lignin- derived phenylpropanoids and other monoaromatic compounds by termites.. Appl Environ Microbiol 612688–2695
    [Google Scholar]
  9. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14454–458
    [Google Scholar]
  10. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48621–626
    [Google Scholar]
  11. Dolfing J. 1990; Reductive dechlorination of 3-chloro- benzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153264–266
    [Google Scholar]
  12. Fardeu M.-L., Ollivier B., Patel B. K. C., Dwivedi P., Ragot M., Garcia J. -L. 1995; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotoma- culum thermosapovorans.. Int J Syst Bacteriol 45218–221
    [Google Scholar]
  13. Glöckler R., Tschech A., Fuchs G. 1989; Reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl- CoA in a denitrifying, phenol-degrading Pseudomonas species. FEBS Lett 251237–240
    [Google Scholar]
  14. Gorny N., Schink B. 1994; Hydroquinone degradation via reductive dehydroxylation of gentisyl-CoA by a strictly anaerobic fermenting bacterium. Arch Microbiol 16125–32
    [Google Scholar]
  15. Gregersen T. 1978; Rapid method for distinction of Gram- negative from Gram-positive bacteria. Eur J Appl Microbiol BiotechnolS123–127
    [Google Scholar]
  16. Heising S., Brune A., Schink B. 1991; Anaerobic degradation of 3-hydroxybenzoate by a newly isolated nitrate-reducing bacterium. FEMS Microbiol Lett 84267–272
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules.. In Mammalian Protein Metabolism pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Kaiser J. P., Hanselmann K. W. 1983; Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch Microbiol 133185–194
    [Google Scholar]
  19. Koch J., Eisenreich W., Bacher A., Fuchs G. 1993; Products of enzymatic reduction of benzoyl-CoA, a key reaction in anaerobic aromatic metabolism. Eur J Biochem 211649–662
    [Google Scholar]
  20. Kuhn E. P., Suflita J. M., Rivera M. D., Young L. Y. 1989; Influence of alternate electron acceptors on the metabolic fate of hydroxybenzoate isomers in anoxic aquifer slurries. Appl Environ Microbiol 55590–598
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39159–167
    [Google Scholar]
  22. Murray M. G., Thompson W. F. 1980; Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 84321–4325
    [Google Scholar]
  23. Pfennig N. 1978; Rhodocycluspurpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28283–288
    [Google Scholar]
  24. Platen H., Schink B. 1987; Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149136–141
    [Google Scholar]
  25. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: position and implications for the systematics of the order Spirochaetales.. Syst Appl Microbiol 16224–226
    [Google Scholar]
  26. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett 113125–128
    [Google Scholar]
  27. Schink B. 1992; Syntrophism among prokaryotes.. In The Prokaryotes pp 276–299 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  28. Schink B., Brune A., Schnell S. 1992; Anaerobic degradation of aromatic compounds.. In Anaerobic Degradation of Natural Compounds pp 220–242 Edited by Winkelmann G. Weinheim: VCH;
    [Google Scholar]
  29. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41100–180
    [Google Scholar]
  30. Thauer R. K., Morris J. G. 1984; Metabolism of chemotrophic anaerobes: old views and new perspectives. Symp Soc Gen Microbiol 36123–168
    [Google Scholar]
  31. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii.. Arch Microbiol 137163–167
    [Google Scholar]
  32. Tschech A., Schink B. 1985; Fermentative degradation of resorcinol and resorcylic acids. Arch Microbiol 14352–59
    [Google Scholar]
  33. Tschech A., Schink B. 1986; Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. Arch Microbiol 145396–402
    [Google Scholar]
  34. Wallrabenstein C., Schink B. 1994; Evidence of reversed electron-transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii.. Arch Microbiol 162136–142
    [Google Scholar]
  35. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate reducing bacteria enriched with acetate from saline environments. Description of Desulfo- bacter postgatei gen. nov. sp. nov. Arch Microbiol 129395–400
    [Google Scholar]
  36. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134286–294
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-48-1-215
Loading
/content/journal/ijsem/10.1099/00207713-48-1-215
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error