1887

Abstract

Genomic diversity in 21 strains of and 10 strains of was investigated by random amplified polymorphic DNA (RAPD) analysis, which samples the whole genome, and by two PCR fingerprinting techniques sampling the hypervariable spacers between the conserved 16S and 23S rRNA genes of the rRNA gene operon (ITS-PCR) and regions between tRNA genes (tDNA-PCR). RAPD analysis showed a remarkable diversity among strains of that was not observed with the rRNA and tRNA intergenic-spacer-targeted PCR, where all the strains showed practically identical fingerprints. A wide variability among the strains was also observed in the plasmid profiles, suggesting that the genetic diversity within species can arise from plasmid transfer. One contribution to the diversity detected by RAPD analysis was determined by the presence of large extrachromosomal elements that were amplified during RAPD analysis as shown by Southern hybridization experiments. In contrast to the strains of , the 10 strains of were grouped into two clusters which were the same with all the methods employed. The 16S rRNA genes were identical in all 10 strains when examined using single strand conformation polymorphism analysis after digestion with and . From these data we hypothesize two different evolutionary schemes for the two species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-1-107
1998-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/1/ijs-48-1-107.html?itemId=/content/journal/ijsem/10.1099/00207713-48-1-107&mimeType=html&fmt=ahah

References

  1. Agaisse H., Lereclus D. 1995; How does Bacillus thuringiensis produce so much insecticidal crystal protein?. J Bacteriol 177:6027–6032
    [Google Scholar]
  2. Artiushin S., Minion F. C. 1996; Arbitrarily primed PCR analysis of Mycoplasma hyopneumoniae field isolates demonstrates genetic heterogeneity. Int J Syst Bacteriol 46:324–328
    [Google Scholar]
  3. Ash C., Collins M. D. 1992; Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol Lett 94:75–80
    [Google Scholar]
  4. Ash C., Farrow J. A. E., Dorsch M., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthracisBacillus cereus and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:343–346
    [Google Scholar]
  5. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  6. Boehringer Mannheim 1993 The DIG System User's Guide for Filter Hybridization Mannheim, Germany: Boehringer Mannheim;
    [Google Scholar]
  7. Bourque S. N., Valero J. R., Mercier J., Lavoie M. C., Levesque R. C. 1993; Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Appl Environ Microbiol 59:523–527
    [Google Scholar]
  8. Brousseau R., Saint-Onge A., Prefontaine G., Masson L., Cabana J. 1993; Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl Environ Microbiol 59:114–119
    [Google Scholar]
  9. Bruno J. G., Yu H. 1996; Immunomagnetic-electro- chemiluminescent detection of Bacillus anthracis spores in soil matrices. Appl Environ Microbiol 62:3474–3476
    [Google Scholar]
  10. Carlson C. R., Caugant D. A., Kolsto A.-B. 1994; Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725
    [Google Scholar]
  11. Carlson C. R., Gronstad A., Kolsto A.-B. 1992; Physical maps of the genomes of three Bacillus cereus strains. J Bacteriol 174:3750–3756
    [Google Scholar]
  12. Carlson C. R., Johansen T., Kolsto A.-B. 1996; The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol Lett 141:163–167
    [Google Scholar]
  13. Carlson C. R., Kolsto A.-B. 1993; A complete physical map of a Bacillus thuringiensis chromosome. J Bacteriol 175:1053–1060
    [Google Scholar]
  14. Carlson C. R., Kolsto A.-B. 1994; A small (2-4 Mb) Bacillus cereus chromosome corresponds to one conserved region of a larger (5 3 Mb) Bacillus cereus chromosome. Mol Microbiol 13:161–169
    [Google Scholar]
  15. De Lamballerie X., Zandotti C., Vignoli C., Bollet C., De Micco P. 1992; A one-step microbial DNA extraction method using ‘Chelex 100’ suitable for gene amplification. Res Microbiol 143:785–790
    [Google Scholar]
  16. Duncan K. E., Ferguson N., Kimura K., Zhou X., Istock C. A. 1994; Fine-scale genetic and phenotypic structure in natural populations of Bacillus subtilis and Bacillus licheniformis : implications for bacterial evolution and speciation. Evolution 48:2002–2025
    [Google Scholar]
  17. Duncan K. E., Istock C. A., Graham J. B., Ferguson N. 1989; Genetic exchange between Bacillus subtilis and Bacillus licheniformis variable hybrid stability and the nature of bacterial species. Evolution 43:1585–1609
    [Google Scholar]
  18. Elaichouni A., Van Emmelo J., Claeys G., Verschraegen G., Verhelst R., Vaneechoutte M. 1994; Study of the influence of plasmids on the arbitrary primer polymerase chain reaction fingerprint of Escherichia coli strains. FEMS Microbiol Lett 115:335–340
    [Google Scholar]
  19. Grompe M. 1993; The rapid detection of unknown mutations in nucleic acids. Nature Genet 5:111–117
    [Google Scholar]
  20. Harrell L. J., Andersen G. L., Wilson K. H. 1995; Genetic variability of Bacillus anthracis and related species. J Clin Microbiol 33:1847–1850
    [Google Scholar]
  21. Henderson I., Dongzheng Y., Turnbull P. C. B. 1995; Differentiation of Bacillus anthracis and other ‘Bacillus cereus group’ bacteria using IS2J/-derived sequences. FEMS Microbiol Lett 128:113–118
    [Google Scholar]
  22. Henderson I., Duggleby C. J., Turnbull P. C. B. 1994; Differentiation of Bacillus anthracis from other Bacillus cereus group bacteria with the PCR. Int J Syst Bacteriol 44:99–105
    [Google Scholar]
  23. Horowitz S., Gilbert J. N., Griffin W. M. 1990; Isolation and characterization of a surfactant produced by Bacillus licheniformis. J Ind Microbiol 6:243–248
    [Google Scholar]
  24. Iwahana H., Yoshimoto K., Itakara M. 1992; Detection of point mutations by SSCP of PCR-amplified DNA after endonuclease digestion. Biotechniques 12:64–67
    [Google Scholar]
  25. Jackson S. G., Goodbrand R. B., Ahmed R., Kasatiya S. 1995; Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett Appl Microbiol 21:103–105
    [Google Scholar]
  26. Jensen G. B., Andrup L., Wilcks A., Smidt L., Poulsen O. M. 1996; The aggregation-mediated conjugation system of Bacillus thuringiensis subsp. israelensis host range and kinetics of transfer. Curr Microbiol 33:228–236
    [Google Scholar]
  27. Jensen M. A., Webster J. A., Straus N. 1993; Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA polymorphism. Appl Environ Microbiol 59:945–952
    [Google Scholar]
  28. Kado C. I., Liu S.-T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373
    [Google Scholar]
  29. Kcimpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98
    [Google Scholar]
  30. Kumeda Y., Asao T. 1996; Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section flavi. Appl Environ Microbiol 62:2947–2952
    [Google Scholar]
  31. Manachini P. L., Parini C., Fortina M. G., Benazzi L. 1987; Blil a restriction endonuclease from Bacillus licheniformis. FEBS Lett 214:305–307
    [Google Scholar]
  32. Mao W., Pan R., Freedman D. 1992; High production of alkaline protease by Bacillus licheniformis in a fed-batch fermentation using a synthetic medium. J Ind Microbiol 11:1–6
    [Google Scholar]
  33. Nakamura L. K. 1994; DNA relatedness among Bacillus thuringiensis serovars. Int J Syst Bacteriol 44:125–129
    [Google Scholar]
  34. Nakamura L. K., Jackson M. A. 1995; Clarification of the taxonomy of Bacillus mycoides. Int J Sys Bacteriol 45:46–49
    [Google Scholar]
  35. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. 1989; Detection of polymorphisms in human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770
    [Google Scholar]
  36. Parini C., Fortina M. G. 1995; Site-specific restriction endonucleases in Bacillus licheniformis. FEMS Microbiol Lett 132:285–289
    [Google Scholar]
  37. Parini C., Manachini P. L. 1997 Personal communication
  38. Petersen D. J., Shishido M., Brian Holl F., Chanway C. P. 1995; Use of species- and strain-specific PCR primers for identification of conifer root-associated Bacillus spp. FEMS Microbiol Lett 133:71–76
    [Google Scholar]
  39. Rohif F. J. 1987; NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System for the IBM PC Microcomputerand Compatibles, Version 1.30. New York: Applied Biostatistics;
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schraft H., Griffith M. W. 1995; Specific oligonucleotide primers for detection of lecitinase-positive Bacillus spp. by PCR. Appl Environ Microbiol 61:98–102
    [Google Scholar]
  42. Schraft H., Steele M., McNab B., Odumeru J., Griffiths M. W. 1996; Epidemiological typing of Bacillus spp. isolated from food. Appl Environ Microbiol 62:4229–4232
    [Google Scholar]
  43. Seal S. E., Jackson L. A., Daniels M. J. 1992; Use of tRNA consensus primers to indicate subgroups of Pseudomonas solanacearum by polymerase chain reaction amplification. Appl Environ Microbiol 58:3759–3761
    [Google Scholar]
  44. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy: the Principles and Practice of Numerical Classification San Francisco: W. H. Freeman;
    [Google Scholar]
  45. Stephan R. 1996; Randomly amplified polymorphic DNA (RAPD) assay for genomic fingerprinting of Bacillus cereus isolates. Int J Food Microbiol 31:311–316
    [Google Scholar]
  46. Stephan R., Schraft H., Untermann F. 1994; Characterization of Bacillus licheniformis with the RAPD technique (randomly amplified polymorphic DNA). Lett Appl Microbiol 18:260–263
    [Google Scholar]
  47. Takasaki Y., Furutani S., Hayashi S., Imada K. 1994; Acid-stable and thermostable a-amylase from Bacillus licheniformis a. J Ferment Bioeng 77:94–96
    [Google Scholar]
  48. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  49. Void B. S. 1985; Structure and organization of genes for transfer ribonucleic acid in Bacillus subtilis. Microbiol Rev 49:71–80
    [Google Scholar]
  50. Welsh J., McClelland M. 1990; Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218
    [Google Scholar]
  51. Welsh J., McClelland M. 1991; Genomic fingerprints produced by PCR with consensus tRNA gene primers. Nucleic Acids Res 19:861–866
    [Google Scholar]
  52. Welsh J., McClelland M. 1992; PCR-amplified length polymorphisms in tRNA intergenic spacers for categorizing staphylococci. Mol Microbiol 6:1673–1680
    [Google Scholar]
  53. Wheeler A., Oerther D. B., Larsen N., Stahl D. A., Raskin L. 1996; The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559
    [Google Scholar]
  54. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. 1990; DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535
    [Google Scholar]
  55. Woodburn M. A., Yousten A. A., Hilu K. H. 1995; Random amplified polymorphic DNA fingerprinting of mosquito-pathogenic and nonpathogenic strains of Bacillus sphaericus. Int J Syst Bacteriol 45:212–217
    [Google Scholar]
  56. Wunschel D., Fox K., F„ Black G. E., Fox A. 1994; Discrimination among B. cereus group, in comparison to B. subtilis by structural carbohydrate profiles and ribosomal RNA spacer region PCR. Syst Appl Microbiol 17:625–635
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-1-107
Loading
/content/journal/ijsem/10.1099/00207713-48-1-107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error