sp. nov. and sp. nov., from Nodules Free

Abstract

Abstract

Thirty-one strains of two new genomic species (genomic species 1 and 2) of rhizobia isolated from root nodules of and originating from various locations in France were compared with reference strains of rhizobia by performing a numerical analysis of 64 phenotypic features. Each genomic species formed a distinct phenon and was separated from the other rhizobial species. A comparison of the complete 16S rRNA gene sequences of a representative of genomic species 1 (strain R602sp) and a representative of genomic species 2 (strain H152) with the sequences of other rhizobia and related bacteria revealed that each genomic species formed a lineage independent of the lineages formed by the previously recognized species of rhizobia. Genomic species 1 clustered with the species that include the bean-nodulating rhizobia, , , and , and branched with unclassified rhizobial strain OK50, which was isolated from root nodules of in Japan. Genomic species 2 was distantly related to all other species and related taxa, and the most closely related organisms were and several species. On the basis of the results of phenotypic and phylogenetic analyses and genotypic data previously published and reviewed in this paper, two new species of the genus and are proposed for genomic species 1 and 2, respectively. Each species could be divided in two subgroups on the basis of symbiotic characteristics, as shown by phenotypic (host range and nitrogen fixation effectiveness) and genotypic data. For each species, one subgroup had the same symbiotic characteristics as biovar phaseoli and biovar phaseoli. The other subgroup had a species-specific symbiotic phenotype and genotype. Therefore, we propose that each species should be subdivided into two biovars, as follows: biovar gallicum and biovar phaseoli; and biovar giardinii and biovar phaseoli.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-996
1997-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-996.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-996&mimeType=html&fmt=ahah

References

  1. Amarger N. Unpublished data
    [Google Scholar]
  2. Amarger N., Bours M., Revoy F., Allard M. R., Laguerre G. 1994; Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant Soil 161:147–156
    [Google Scholar]
  3. Bergersen F. J. 1961; The growth of Rhizobium in synthetic media. Aust. J. Biol. Sci. 14:349–360
    [Google Scholar]
  4. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84:188–198
    [Google Scholar]
  5. Beynon J. L., Josey D. P. 1980; Demonstration of heterogeneity in natural population of Rhizobium phaseoli using variation in intrinsic antibiotic resistance. J. Gen. Microbiol. 118:437–442
    [Google Scholar]
  6. Brom S., Martinez E., Davila G., Palacios R. 1988; Narrow- and broad-host range symbiotic plasmids of Rhizobium spp. strains that nodulate Phaseolus vulgaris. Appl. Environ. Microbiol. 54:1280–1283
    [Google Scholar]
  7. Crow V. L., Jarvis B. D. W., Greenwood R. M. 1981; Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. Int. J. Syst. Bacteriol. 31:152–172
    [Google Scholar]
  8. Davis E. O., Johnston A. W. B. 1990; Analysis of three nodD genes in Rhizobium leguminosarum biovar phaseoli; nodD1 is preceded by nolE, a gene whose product is secreted from the cytoplasm. Mol. Microbiol. 4:921–932
    [Google Scholar]
  9. De Lajudie P., Willems A., Pot B., Dewettinck D., Maestrojuan G., Neyra M., Collins M. D., Dreyfus B., Kersters K., Gillis M. 1994; Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb, nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int. J. Syst. Bacteriol. 44:715–733
    [Google Scholar]
  10. Dessen P., Fondrat C., Valencien C., Mugnier C. 1990; Bisance: a French service for access to biomolecular sequence databases. CABIOS 6:355–356
    [Google Scholar]
  11. Eardly B. D., Wang F., Whittam T. S., Selander R. K. 1995; Species limits in Rhizobium populations that nodulate the common bean (Phaseolus vulgaris). Appl. Environ. Microbiol. 61:507–512
    [Google Scholar]
  12. Felsenstein J. 1989; PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  13. Géniaux E., Flores M., Palacios R., Martinez E. 1995; Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. Int. J. Syst. Bacteriol. 45:392–394
    [Google Scholar]
  14. Géniaux E., Laguerre G., Amarger N. 1993; Comparison of geographically distant populations of Rhizobium isolated from root nodules of Phaseolus vulgaris. Mol. Ecol. 2:295–302
    [Google Scholar]
  15. Gibbins A. M., Gregory K. F. 1972; Relatedness among Rhizobium and Agrobacterium species determined by three methods of nucleic acid hybridization. J. Bacteriol. 111:129–141
    [Google Scholar]
  16. Graham P. H. 1964; The application of computer techniques to the taxonomy of the root-nodule bacteria of legumes. J. Gen. Microbiol. 35:511–517
    [Google Scholar]
  17. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B., Strijdom B. W., Young J. P. W. 1991; Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41:582–587
    [Google Scholar]
  18. Hernandez-Lucas I., Segovia L., Martinez-Romero E., Pueppke S. G. 1995; Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Appl.. Environ. Microbiol. 61:2775–2779
    [Google Scholar]
  19. Higgins D. G., Sharp P. M. 1988; Clustal: a package for performing multiple alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  20. Jarvis B. D. W., Downer H. L., Young J. P. W. 1992; Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int. J. Syst. Bacteriol. 42:93–96
    [Google Scholar]
  21. Jarvis B. D. W., MacLean T. S., Robertson I. G. C., Fanning G. R. 1977; Phenetic similarity and DNA base sequence homology of root nodule bacteria from New Zealand native legumes and Rhizobium strains from agricultural plants. N. Z. J. Agric. Res. 20:235–248
    [Google Scholar]
  22. Jarvis B. D. W., Pankhurst C. E., Patel J. J. 1982; Rhizobium loti, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 32:378–380
    [Google Scholar]
  23. Jordan D. C. 1984; Family III. Rhizobiaceae. 234–242 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams and Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  24. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:11–120
    [Google Scholar]
  25. Laguerre G., Allard M. R., Revoy F., Amarger N. 1994; Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60:56–63
    [Google Scholar]
  26. Laguerre G., Bardin M., Amarger N. 1993; Isolation from soil of symbiotic and nonsymbiotic Rhizobium leguminosarum by DNA hybridization. Can. J. Microbiol. 39:1142–1149
    [Google Scholar]
  27. Laguerre G., Fernandez M. P., Edel V., Normand P., Amarger N. 1993; Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris L. Int. J. Syst. Bacteriol. 43:761–767
    [Google Scholar]
  28. Laguerre G., Géniaux E., Mazurier S. I., Rodriguez-Casartelli R., Amarger N. 1993; Conformity and diversity among field isolates of R. leguminosarum bv. viciae, bv. trifolii, and bv. phaseoli revealed by DNA hybridization using chromosome and plasmid probes. Can. J. Microbiol. 39:412–419
    [Google Scholar]
  29. Laguerre G., van Berkum P., Amarger N., Prévost D. Rhizobia isolated from Astragalus, Oxytropis and Onobrychis spp.: estimated phylogeny by analysis of mapped restriction site polymorphism (MRSP) within 16S rRNA genes and determination of genomic diversity by PCR DNA fingerprinting Submitted for publication
    [Google Scholar]
  30. Lindström K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39:365–367
    [Google Scholar]
  31. Lindström K., van Berkum P., Gillis M., Martinez E., Novikova N., Jarvis B. 1995; Report from the roundtable on Rhizobium taxonomy. 807–810 Tikhonovich I. A., Provorov N. A., Romanov V. I., Newton W. E. Nitrogen fixation: fundamentals and applications Kluwer; Dordrecht, The Netherlands:
    [Google Scholar]
  32. Lortet G., Méar N., Lorquin J., Dreyfus B., de Lajudie P., Rosenberg C., Boivin C. 1996; Nod factor thin layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol. Plant Microbe Interact. 9:736–747
    [Google Scholar]
  33. Martinez E., Florès M., Brom S., Romero D., Davila G., Palacios R. 1988; Rhizobium phaseoli: a molecular genetics view. Plant Soil 108:179–184
    [Google Scholar]
  34. Martinez E., Palacios R., Sanchez F. 1987; Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J. Bacteriol. 169:2828–2834
    [Google Scholar]
  35. Martinez E., Pardo M. A., Palacios R., Cevallos M. A. 1985; Reiteration of nitrogen fixation gene sequences and specificity to Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J. Gen. Microbiol. 131:1779–1786
    [Google Scholar]
  36. Martinez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41:417–426
    [Google Scholar]
  37. Oyaizu H., Matsumoto S., Minamisawa K., Gamou T. 1993; Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J. Gen. Appl. Microbiol. 39:339–354
    [Google Scholar]
  38. Pinero D., Martinez E., Selander R. K. 1988; Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol. 54:2825–2832
    [Google Scholar]
  39. Quinto C., de la Vega H., Flores M., Fernandez L., Ballado T., Soberon G., Palacios R. 1982; Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature (London) 299:724–726
    [Google Scholar]
  40. Robert F. M., Schmidt E. L. 1985; Somatic serogroups among 55 strains of Rhizobium phaseoli. Can. J. Microbiol. 35:519–523
    [Google Scholar]
  41. Roberts G. P., Leps W. T., Silver L. E., Brill W. J. 1980; Use of two-dimensional Polyacrylamide gel electrophoresis to identify and to classify Rhizobium strains. Appl. Environ. Microbiol. 39:414–422
    [Google Scholar]
  42. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  44. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43:374–377
    [Google Scholar]
  45. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. The principles and practice of numerical classification W. H. Freeman & Co.; San Francisco, Calif.:
    [Google Scholar]
  46. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38:1409–1438
    [Google Scholar]
  47. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  48. Swofford D. L. 1993 PAUP: phylogenetic analysis using parsimony, version 3-1.1 Illinois Natural History Survey; Champaign:
    [Google Scholar]
  49. Tjahjoleksono A. 1993 Caractérisation et diversité des souches de Rhizobium nodulant le haricot (Phaseolus vulgaris L.) cultivé en 3 sites tropicaux Université de Lyon; Villeurbanne, France: Ph.D. thesis
    [Google Scholar]
  50. van Berkum P., Beyene D., Eardly B. D. 1996; Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int. J. Syst. Bacteriol. 46:240–244
    [Google Scholar]
  51. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60:407–438
    [Google Scholar]
  52. Vasquez M., Davalos A., De Las Penas A., Sanchez F., Quinto C. 1991; Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. phaseoli strains. J. Bacteriol. 173:1250–1258
    [Google Scholar]
  53. Vincent J. M. 1970 A manual for the practical study of root-nodule bacteria. IBP handbook no. 15 Blackwell Scientific Publications; Oxford, United Kingdom:
    [Google Scholar]
  54. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequence. Int. J. Syst. Bacteriol. 43:305–313
    [Google Scholar]
  55. Young J. P. W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototrophic Rhizobium strain BTAil by polymerase chain reaction sequencing of a 16S rRNA gene segment. J. Bacteriol. 173:2271–2277
    [Google Scholar]
  56. Young J. P. W., Haukka K. E. 1996; Diversity and phylogeny of rhizobia. New Phytol. 133:87–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-996
Loading
/content/journal/ijsem/10.1099/00207713-47-4-996
Loading

Data & Media loading...

Most cited Most Cited RSS feed