1887

Abstract

A newly described strain of the genus was isolated from submarine canyon sediments and is shown by comparative sequence analyses of 16S ribosomal DNA and the gene encoding methyl coenzyme M reductase, I, to be a strain of . Morphological and physiological characteristics are described. In contrast to the two previously described strains that grow exclusively on methanol, methylamines, and dimethylsulfide, C2J is also capable of growth on and methanogenesis from acetate. We propose that the species description for be amended to include aceticlastic strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1258
1997-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1258.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1258&mimeType=html&fmt=ahah

References

  1. Achenbach L., Woese C. 1995 16S and 23S rRNA-like primers. 521–523 Robb F. T., Place A. R., Sowers K. R., Schreier H. J., DasSharma S., Fleischmann E. M.ed Archaea: a laboratory manual–methanogens Cold Spring Harbor Laboratory Press; Plainview, N.Y.:
    [Google Scholar]
  2. Blotevogel K.-H., Fischer U. 1989; Transfer of Methanococcus frisius to the genus Methanosarcina as Methanosarcina frisia comb. nov. Int. J. Syst. Bacteriol. 39:91–92
    [Google Scholar]
  3. Christensen D., Blackburn T. H. 1982; Turnover of 14C-labelled acetate in marine sediments. Mar. Biol. 71:113–119
    [Google Scholar]
  4. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  5. King G. M., Wiebe W. J. 1980; Tracer analysis of methanogenesis in salt marsh soils. Appl. Environ. Microbiol. 39:877–881
    [Google Scholar]
  6. Lane D. J., Pace B., Olsen G. J., Stahl D. A, Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  7. Maestrojuan G. M., Boone J. E., Mah R. A, Menaia J. A. G. F., Sachs M. S., Boone D. R. 1992; Taxonomy and halotolerance of mesophilic Methanosarcina strains, assignment of strains to species, and synonymy of Methanosarcina mazei and Methanosarcina frisia. Int. J. Syst. Bacteriol. 42:561–567
    [Google Scholar]
  8. Martens C. S., Berner R. A. 1974; Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185:1167–1169
    [Google Scholar]
  9. Mountfort D. O., Asher R. A. 1981; Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of Waimea Inlet, Nelson, New Zealand. Appl. Environ. Microbiol. 42:252–258
    [Google Scholar]
  10. Ni S., Woese C. R., Aldrich H. C., Boone D. R. 1994; Transfer of Methanosarcina siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int. J. Syst. Bacteriol. 44:357–359
    [Google Scholar]
  11. Ni S., Boone D. R. 1991; Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int. J. Syst. Bacteriol. 41:410–416
    [Google Scholar]
  12. Oremland R. S., Marsh L. M., Polcin S. 1982; Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296:143–145
    [Google Scholar]
  13. Sansone F. J., Martens C. S. 1981; Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science 211:707–709
    [Google Scholar]
  14. Sowers K. R., Baron S. F., Ferry J. G. 1984; Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978
    [Google Scholar]
  15. Sowers K. R., Boone J. E., Gunsalus R. P. 1993; Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl. Environ. Microbiol. 59:3832–3839
    [Google Scholar]
  16. Sowers K. R., Gunsalus R. P. 1995; Halotolerance in Methanosarcina spp.: role of Ns-acetyl-fl-lysine, a-glutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation. Appl. Environ. Microbiol. 61:4382–4388
    [Google Scholar]
  17. Springer E., Sachs M. S., Woese C. R., Boone D. R. 1995; Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrl) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 45:554–559
    [Google Scholar]
  18. Van de Peer Y., De Wachter R. 1994; TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10:569–570
    [Google Scholar]
  19. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  20. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chern. 238:2882–2886
    [Google Scholar]
  21. Zinder S. H. 1993 Physiological ecology of methanogens. 128–206 Ferry J. G.ed Methanogenesis Chapman and Hall; New York, N.Y.:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1258
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1258
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error