1887

Abstract

A phenotypic study has been carried out on six moderately halophilic gram-positive nonmotile cocci isolated from ponds of a saltern located in Huelva, Spain. These strains were examined for 150 morphological, physiological, biochemical, and nutritional traits and showed phenotypic characteristics similar to those of (formerly ). The guanine-plus-cytosine (G+C) content of their DNA ranged between 70 and 72 mol%, values quite similar to those described for (71.5 mol%). The 16S rDNA sequence analysis of one representative isolate showed that it is phylogenetically quite close to , within the high-G+C-content gram-positive branch. DNA-DNA hybridization experiments showed a high degree of homology (72 to 100%) among the six isolates and the type strain ATCC 21727. All data demonstrate quite clearly that the six isolates are members of the species . Since this species was described on the basis of a single strain isolated from unrefined solar salt, and its description is not complete (especially in the utilization of different compounds), our study contributes to a better description of the moderate halophile .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1231
1997-10-01
2024-07-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1231.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1231&mimeType=html&fmt=ahah

References

  1. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie Leeuwenhoek 36:461–474
    [Google Scholar]
  2. García M. T., Ventosa A, Ruiz-Berraquero F., Kocur M. 1987; Taxonomic study and amended description of Vibrio costicola. Int. J. Syst. Bacteriol. 37:251–256
    [Google Scholar]
  3. Hao M. V., Kocur M., Komagata K. 1984; Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J. Gen. Appl. Microbiol. 30:449–459
    [Google Scholar]
  4. Johnson J. L. 1994 Similarity analysis of DNAs. 655–681 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.ed Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  5. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism 3 Academic Press, Inc.; New York, N.Y.:
    [Google Scholar]
  6. Koch C., Rainey F. A., Stackebrandt E. 1994; 16S rDNA studies on members oí Arthrobacter and Micrococcus·, an aid for their future taxonomic restructuring. FEMS Microbiol. Lett. 123:167–172
    [Google Scholar]
  7. Kushner D. J., Kamekura M. 1988 Physiology of halophilic eubacteria. 109–140 Rodriguez-Valera F.ed Halophilic bacteria I CRC Press; Boca Raton, Fla:
    [Google Scholar]
  8. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res. 24:82–85
    [Google Scholar]
  9. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  10. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  11. Márquez M. C., Ventosa A., Ruiz-Berraquero F. 1990; Marinococcus hispánicas, a new species of moderately halophilic gram-positive cocci. Int. J. Syst. Bacteriol. 40:165–169
    [Google Scholar]
  12. Márquez M. C., Ventosa A., Ruiz-Berraquero F. 1992; Phenotypic and chemotaxonomic characterization of Marinococcus halophilus. Syst. Appl. Microbiol. 15:63–69
    [Google Scholar]
  13. Mathrani I. M., Boone D. R., Mah R. A., Fox G. E., Lau P. P. 1988; Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. Syst. Bacteriol. 38:139–142
    [Google Scholar]
  14. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int. J. Syst. Bacteriol. 45:712–716
    [Google Scholar]
  15. Monteoliva-Sánchez M., Ventosa A., Ramos-Cormenzana A. 1989; Cellular fatty acid composition of moderately halophilic cocci. Syst. Appl. Microbiol. 12:141–144
    [Google Scholar]
  16. Onishi H. 1972; Halophilic amylase from a moderately halophilic Micrococcus. J. Bacteriol. 109:570–574
    [Google Scholar]
  17. Onishi H., Kamekura M. 1972; Micrococcus halobius sp. n. Int. J. Syst. Bacteriol. 22:233–236
    [Google Scholar]
  18. Owen R. J., Hill L. R. 1979 The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. 217–296 Skinner F. A., Lovelock D. W.ed Identification methods for microbiologists, 2nd. Academic Press, Ltd.; London, England.:
    [Google Scholar]
  19. Owen R. J., Pitcher D. 1985 Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. 67–93 Goodfellow M., Minnikin E.ed Chemical methods in bacterial systematics Academic Press, Ltd.; London, England.:
    [Google Scholar]
  20. Paster B. J., Dewhirst F. E. 1988; Phylogeny of Campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38:56–62
    [Google Scholar]
  21. Paterek J. R., Smith P. H. 1988; Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122–123
    [Google Scholar]
  22. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int. J. Syst. Bacteriol. 34:287–292
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  24. Schleifer K. H. 1985 Analysis of the chemical composition and primary structure of murein. 123–156 Gottschalk G.ed Methods in microbiology 18 Academic Press; London, England.:
    [Google Scholar]
  25. Spring S., Ludwig W., Márquez M. C., Ventosa A., Schleifer K.-H. 1996; Halobacillus gen. nov., with descriptions of Halobácillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int. J. Syst. Bacteriol. 46:492–496
    [Google Scholar]
  26. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. 1995; Taxonomic dissection of the genus Micrococcus·. Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol 45:682–692
    [Google Scholar]
  27. Ventosa A. 1994 Taxonomy and phylogeny of moderately halophilic bacteria. 231–241 Priest F. G., Ramos-Cormenzana A., Tindall B. J.ed Bacterial diversity and systematics Plenum Press; New York, N.Y.:
    [Google Scholar]
  28. Ventosa A., Márquez M. C., Ruiz-Berraquero F., Kocur M. 1990; Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic grampositive coccus. Syst. Appl. Microbiol. 13:29–33
    [Google Scholar]
  29. Ventosa A., Márquez M. C., Weiss N., Tindall J. 1992; Transfer of Marinococcus hispanicus to the genus Salinicoccus as Salinicoccus hispanicus comb. nov. Syst. Appl. Microbiol. 15:530–534
    [Google Scholar]
  30. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic gram-negative rods. J. Gen. Microbiol. 128:1959–1968
    [Google Scholar]
  31. Ventosa A., Ramos-Cormenzana A., Kocur M. 1983; Moderately halophilic gram-positive cocci from hypersaline environments. Syst. Appl. Microbiol. 4:564–570
    [Google Scholar]
  32. Ventosa A., Rodriguez-Valera F., Poindexter J. S., Reznikoff W. S. 1984; Selection for moderately halophilic bacteria by gradual salinity increases. Can. J. Microbiol. 30:1279–1282
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murrey R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  34. Weiss N. 1991 Personal communication
  35. Wilharm T., Zhilina T. N., Hummel P. 1991; DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Mathanococcus halophilus”1 to the genus Methanohalophilus as Methanohalophilus halophilus comb. nov. Int. J. Syst. Bacteriol. 41:558–562
    [Google Scholar]
  36. Yu I. K., Kawamura F. 1987; Halomethanococcus doii gen. npv., sp. nov.: an obligately halophilic methanogenic bacterium from solar salt ponds. J. Gen. Appl. Microbiol. 33:303–310
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1231
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error