1887

Abstract

Strains of sp. nov. were isolated from the hot springs within the Geysir geothermal area of Iceland. The strains of produce red-orange-pigmented colonies, have an optimum growth temperature of about 55°C, and have higher levels of 3-OH fatty acids than the strains of the other species of the genus . These strains, unlike all other strains of the species of the genus examined previously, require cysteine, thiosulfate, or thioglycolate for growth in liquid medium, but not in the corresponding medium solidified with agar. Several strains belonging to , isolated from Geysir, also required reduced sulfur compounds for growth in liquid medium, leading to the hypothesis that this requirement is not a taxonomic characteristic of the new species. The new species represented by strains GY-1 and GY-5 can be distinguished from the other species of the genus by biochemical characteristics, fatty acid composition, DNA-DNA reassociation values, and 16S ribosomal DNA sequence. The type strain for is GY-1 (= DSM 11376).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1225
1997-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1225.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1225&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  2. Carreto L., Wait R., Nobre M. F., da Costa M. S. 1996; Determination of the structure of a novel glycolipid from Thermits aquaticus 15004 and demonstration that hydroxy fatty acids are amide linked to glycolipids in Thermus spp. J. Bacteriol. 178:6479–6486
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1987; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  4. Das S. K., Mishra A. K., Tindall B. J., Rainey F. A., Stackebrandt E. 1996; Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int. J. Syst. Bacteriol. 46:981–987
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  6. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  7. Felsenstein J. 1993 PHYLIP (phylogenetic inference package) version 3.5.1. Department of Genetics; University of Washington, Seattle.:
    [Google Scholar]
  8. Hensel R., Demharter W., Kandler O., Kroppenstedt R. M., Stackebrandt E. 1986; Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int. J. Syst. Bacteriol. 36:444–453
    [Google Scholar]
  9. Hudson J. A., Morgan H. W., Daniel R. M. 1989; Numerical classification of Thermus isolates from globally distributed hot springs. Syst. Appl. Microbiol. 11:250–256
    [Google Scholar]
  10. HuB V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  11. Janke K. D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  13. Kristjansson J. K., Hjorleifsdottir S., Marteinsson V. T., Alfredsson G. A. 1994; Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-l. Syst. Appl. Microbiol. 17:44–50
    [Google Scholar]
  14. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38:358–361
    [Google Scholar]
  15. Loginova L. G., Egorova L. A., Golovacheva R. S., Seregina L. M. 1984; Thermus ruber sp. nov., nom. rev. Int. J. Syst. Bacteriol. 34:498–499
    [Google Scholar]
  16. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res. 22:3485–3487
    [Google Scholar]
  17. Manaia C. M., da Costa M. S. 1991; Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J. Gen. Microbiol. 137:2643–2648
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  19. Nobre M. F., Triiper H. G., da Costa M. S. 1996; Transfer of Thermus ruber (Loginova et al. 1984), Thermus silvanus (Tenreiro et al. 1995), and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb, nov., Meiothermus silvanus comb, nov., and Meiothermus chliarophilus comb, nov., respectively, and emendation of the genus Thermus. Int. J. Syst. Bacteriol. 46:604–606
    [Google Scholar]
  20. Nobre M. F., Carreto L., Wait R., Tenreiro S., Fernandes O., Sharp R. J., da Costa M. S. 1996; Fatty acid composition of the species of the genera Thermus and Meiothermus. Syst. Appl. Microbiol. 19:303–311
    [Google Scholar]
  21. Nold S. C., Ward D. M. 1995; Diverse Thermus species inhabit a single hot spring microbial mat. Syst. Appl. Microbiol. 18:274–278
    [Google Scholar]
  22. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol. 46:1088–1092
    [Google Scholar]
  23. Ruffett M., Hammond S., Williams R. A. D., Sharp R. J. 1992 A taxonomic study of red pigmented gram negative thermophiles. 74 Geirsdottir A. M., Brown H. P., Skjenstad T.ed Conference Program Abstracts Thermophiles: Science and Technology. IceTec; Reykjavik, Iceland.:
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  25. Santos M. A., Williams R. A. D., da Costa M. S. 1989; Numerical taxonomy of Thermus isolates from hot springs in Portugal. Syst. Appl. Microbiol. 12:310–315
    [Google Scholar]
  26. Schook L. B., Berk R. S. 1978; Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources. J. Bacteriol. 133:1377–1382
    [Google Scholar]
  27. Sharp R. J., Williams R. A. D. 1988; Properties of Thermus ruber strains isolated from Icelandic hot springs and DNA:DNA homology of Thermus ruber and Thermus aquaticus. Appl. Environ. Microbiol. 54:2049–2053
    [Google Scholar]
  28. Sorbo B. 1987; Sulfate: turbidimetric and nephelometric methods. Methods Enzymol. 143:3–6
    [Google Scholar]
  29. Tenreiro S., Nobre M. F., da Costa M. S. 1995; Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures. Int. J. Syst. Bacteriol. 45:633–639
    [Google Scholar]
  30. Tindall B. J. 1989; Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol. Lett. 60:251–254
    [Google Scholar]
  31. Tindall B. J. 1991; Lipid composition of Rhodothermus marinus. FEMS Microbiol. Lett. 80:65–68
    [Google Scholar]
  32. Westley J. 1987; Thiocyanate and thiosulfate. Methods Enzymol. 143:23–25
    [Google Scholar]
  33. Williams R. A. D., da Costa M. S. 1992 The genus Thermus and related microorganisms. 3745–3753 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; New York, N.Y.:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1225
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error