1887

Abstract

We examined the taxonomic position of seven isolates, recovered from Flemish and Scottish drinking water production plants and reservoirs, which were previously recognized by numerical analysis of genomic AFLP fingerprints as members of an unknown taxon that most closely resembled the species (DNA hybridization group [HG] 2). The new phenotypic and DNA-DNA hybridization data obtained in this study show that the -like strains constitute a separate species, for which the name sp. nov. is being proposed. The new species exhibited an internal DNA relatedness ranging from 79 to 100% and was 22 to 63% related to the type or reference strains of other spp. The highest DNA binding values were determined with (51 to 63%), followed by sensu stricto (HG1; 50 to 60%) and (HG3; 39 to 55%). Although fingerprints generated by ribotyping and cellular fatty acid analysis often were highly similar, minor differences between the respective fingerprints were of significance for the differentiation of from its closest taxonomic neighbors, HG1, HG2, and HG3. Phenotypically, all seven strains of were positive for acid and gas production from -glucose and glycerol, growth in KCN broth, arginine dihydrolase, DNase, Voges-Proskauer reaction, and resistance to vibriostatic agent O/129 and ampicillin but displayed negative reactions for production of urease, tryptophan deaminase, ornithine decarboxylase, and lysine decarboxylase (LDC). None of the strains displayed strong hemolytic activity. The lack of -sucrose fermentation and LDC production and the ability to utilize -lactate as the sole energy and carbon source were useful characteristics for the biochemical separation of from Other spp. could be differentiated phenotypically from the new species by at least two features. The chromosomal G+C content of ranges from 57.7 to 59.6 mol%. Strain LMG 17541 is proposed as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1165
1997-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1165.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1165&mimeType=html&fmt=ahah

References

  1. Abott S. L., Cheung W. K. W., Kroske-Bystrom S., Malekzadeh T., Janda M. J. 1992; Identification of Aeromonas strains to the genospecies level in the clinical laboratory. J. Clin. Microbiol. 30:1262–1266
    [Google Scholar]
  2. Ali A., Carnahan A. M., Altwegg M., Liithy-Hottenstein J., Joseph S. W. 1996; Aeromonas bestiarum sp. nov. (formerly genomospecies DNA group 2 A. hydrophila), a new species isolated from non-human sources. Med. Microbiol. Lett. 5:156–165
    [Google Scholar]
  3. Allen D., Austin B., Colwell R. R. 1983; Aeromonas media, a new species isolated from river water. Int. J. Syst. Bacteriol. 33:599–604
    [Google Scholar]
  4. Altwegg M., Liithy-Hottenstein J. 1991; Methods for the identification of DNA hybridization groups in the genus Aeromonas. Experientia 47:403–406
    [Google Scholar]
  5. Altwegg M., Steigerwalt A. G., Altwegg-Bissig R., Liithy-Hottenstein J., Brenner D. J. 1990; Biochemical identification of Aeromonas genospecies isolated from humans. J. Clin. Microbiol. 28:258–264
    [Google Scholar]
  6. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989 Current protocols in molecular biology. John Wiley & Sons; Chichester, United Kingdom.:
    [Google Scholar]
  7. Carnahan A., Fanning G. R., Joseph S. W. 1991; Aeromonas jandaei (formerly genospecies DNA group 9 A. sobria), a new sucrose-negative species isolated from clinical specimens. J. Clin. Microbiol. 29:560–564
    [Google Scholar]
  8. Carnahan A. M., Altwegg M. 1996 Taxonomy. 1–38 Austin B., Altwegg M., Gosling P. J., Joseph S.ed The genus Aeromonas John Wiley & Sons; Chichester, United Kingdom.:
    [Google Scholar]
  9. Carnahan A. M., Chakraborty T., Fanning G. R., Verma D., Ali A., Janda J. M., Joseph S. W. 1991; Aeromonas trota sp. nov., an ampicillin-susceptible species isolated from clinical specimens. J. Clin. Microbiol. 29:1206–1210
    [Google Scholar]
  10. Carnahan A. M., Joseph S. W. 1993; Systematic assessment of geographically and clinically diverse aeromonads. Syst. Appl. Microbiol. 16:72–84
    [Google Scholar]
  11. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  12. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  13. Deodhar L. P., Saraswathi K., Varudkar A. 1991; Aeromonas spp. and their association with human diarrheal disease. J. Clin. Microbiol. 29:853–856
    [Google Scholar]
  14. Dryden M., Munro R. 1989; Aeromonas septicemia: relationship of species and clinical features. Pathology 21:111–114
    [Google Scholar]
  15. Edwards P. R., Fife M. A. 1956; Cyanide media in the differentiation of enteric bacteria. Appl. Microbiol. 4:46
    [Google Scholar]
  16. Esteve C. 1995; Numerical taxonomy of Aeromonadaceae and Vibrionaceae associated with reared fish and surrounding fresh and brackish water. Syst. Appl. Microbiol. 18:391–402
    [Google Scholar]
  17. Esteve C., Gutiérrez M. C., Ventosa A. 1995; Aeromonas encheleia sp. nov., isolated from European eels. Int. J. Syst. Bacteriol. 45:462–466
    [Google Scholar]
  18. Gavriel A. A., Landre J. P. B., Lamb A. J. Incidence of mesophilic Aeromonas within a public drinking water supply in north-east Scotland. J. Appl. Microbiol. in press
    [Google Scholar]
  19. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12:143–153
    [Google Scholar]
  20. Hánninen M.-L. 1994; Phenotypic characteristics of the three hybridization groups of Aeromonas hydrophila complex isolated from different sources. J. Appl. Bacteriol. 76:455–462
    [Google Scholar]
  21. Hansen W., Freney J., Labbe M., Renaud F., Yourassowsky E., Fleurette J. 1991; Gas-liquid chromatographic analysis of cellular fatty acid methyl esters in Aeromonas species. Zentralbl. Bakteriol. 275:1–10
    [Google Scholar]
  22. Hickman-Brenner F. W., Fanning G. R., Arduino M. J., Brenner D. J., Farmer J. J. III 1988; Aeromonas schubertii, a new mannitol-negative species found in human clinical specimens. J. Clin. Microbiol. 26:1561–1564
    [Google Scholar]
  23. Hickman-Brenner F. W., MacDonald K. L., Steigerwalt A. G., Fanning G. R., Brenner D. J., Farmer J. J. III 1987; Aeromonas veronii, a new ornithine decarboxylase-positive species that may cause diarrhea. J. Clin. Microbiol. 25:900–906
    [Google Scholar]
  24. Holmes P., Niccolls L. M., Sartory D. P. 1996 The ecology of meso-philic Aeromonas in the aquatic environment. 127–150 Austin B., Altwegg M., Gosling P. J., Joseph S.ed The genus Aeromonas John Wiley & Sons; Chichester, United Kingdom.:
    [Google Scholar]
  25. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J. Bacteriol. 66:24–27
    [Google Scholar]
  26. Hunter P. R., Cooper-Poole B., Hornby H. 1992; Isolation ol Aeromonas hydrophila from cooked tripe. Lett. Appl. Microbiol. 15:222–223
    [Google Scholar]
  27. Buys G., Altwegg M., Hänninen M.-L., Vancanneyt M., Vauterin L., Coopman R., Torek U., Lüthy-Hottenstein J., Janssen P., Kersters K. 1996; Genotypic and chemotaxonomic description of two subgroups in the species Aeromonas eucrenophila and their affiliation to A. encheleia and Aeromonas DNA hybridization group 11. Syst. Appl. Microbiol. 19:616–623
    [Google Scholar]
  28. Huys G., Kämpfer P., Altwegg M., Coopman R., Janssen P., Gillis M., Kersters K. 1997; Inclusion of Aeromonas DNA hybridization group 11 in Aeromonas encheleia and extended descriptions of the species Aeromonas eucrenophila and A. encheleia. Int. J. Syst. Bacteriol. 47:1157–1164
    [Google Scholar]
  29. Huys G., Kersters I., Coopman R., Janssen P., Kersters K. 1996; Genotypic diversity among Aeromonas isolates recovered from drinking water production plants as revealed by AFLP™ analysis. Syst. Appl. Microbiol. 19:428–435
    [Google Scholar]
  30. Huys G., Kersters I., Vancanneyt M., Coopman R., Janssen P., Kersters K. 1995; Diversity of Aeromonas sp. in Flemish drinking water production plants as determined by gas-liquid chromatographic analysis of cellular fatty acid methyl esters (FAMEs). J. Appl. Bacteriol. 78:445–455
    [Google Scholar]
  31. Huys G., Lamb A. Unpublished data
  32. Huys G., Vancanneyt M., Coopman R., Janssen P., Falsen E., Altwegg M., Kersters K. 1994; Cellular fatty acid composition as a chemotaxonomic marker for the differentiation of phenospecies and hybridization groups in the genus Aeromonas. Int. J. Syst. Bacteriol. 44:651–658
    [Google Scholar]
  33. Janda J. M. 1991; Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 4:397–410
    [Google Scholar]
  34. Janda J. M., Guthertz L. S., Kokka R. P., Shimada T. 1994; Aeromonas species in septicemia: laboratory characteristics and clinical observations. Clin. Infect. Dis. 19:77–83
    [Google Scholar]
  35. Joseph S. W., Carnahan A. M., Brayton P. R., Fanning G. R., Almazan R., Drabick C., Trudo E. W. Jr., Colwell R. R. 1991; Aeromonas jandaei and Aeromonas veronii dual infection of a human wound following aquatic exposure. J. Clin. Microbiol. 29:565–569
    [Google Scholar]
  36. Kämpfer P. 1990; Evaluation of the Titertek-Enterobac-Automated system (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl. Bakteriol. 273:341–351
    [Google Scholar]
  37. Kämpfer P., Altwegg M. 1992; Numerical classification and identification of Aeromonas genospecies. J. Appl. Bacteriol. 72:341–351
    [Google Scholar]
  38. Kämpfer P., Blasczyk K., Auling G. 1994; Characterization of Aeromonas genomic species by using quinone, polyamine, and fatty acid patterns. Can. J. Microbiol. 40:844–850
    [Google Scholar]
  39. Kersters I., Van Vooren L., Huys G., Janssen P., Kersters K., Verstraete W. 1995; Influence of temperature and process technology on the occurrence of Aeromonas species and hygienic indicator organisms in drinking water production plants. Microb. Ecol. 30:203–218
    [Google Scholar]
  40. Khardori N., Fainstein V. 1988; Aeromonas and Plesiomonas as etiological agents. Annu. Rev. Microbiol. 42:395–419
    [Google Scholar]
  41. Krovacek K., Faris A., Baloda S. B., Peterz M., Lindberg T., Mansson I. 1992; Prevalence and characterization of Aeromonas spp. isolated from foods in Uppsala, Sweden. Food Microbiol. 9:29–36
    [Google Scholar]
  42. Lingappa Y., Lockwood J. L. 1961; A chitin medium for isolation, growth and maintenance of actinomycetales. Náture 189:158–159
    [Google Scholar]
  43. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  44. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  45. Martinetti Lucchini G., Altwegg M. 1992; rRNA gene restriction patterns as taxonomic tools for the genus Aeromonas. Int. J. Syst. Bacteriol. 42:384–389
    [Google Scholar]
  46. Martinez-Murcia A. J., Esteve C., Garay E., Collins M. D. 1992; Aeromonas allosaccharophila sp. nov., a new mesophilic member of the genus Aeromonas. FEMS Microbiol. Lett. 91:199–206
    [Google Scholar]
  47. Namdari H., Bottone E. J. 1990; Microbiologic and clinical evidence supporting the role of Aeromonas caviae as a pediatric enteric pathogen. J. Clin. Microbiol. 28:837–840
    [Google Scholar]
  48. National Committee for Clinical Laboratory Standards 1993 Approved standard M7-A3. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically National Committee for Clinical Laboratory Standards; Villanova, Pa:
    [Google Scholar]
  49. National Committee for Clinical Laboratory Standards 1993 Tentative standard M6-T. Evaluating production lots of dehydrated Mueller-Hinton agar National Committee for Clinical Laboratory Standards; Villanova, Pa:
    [Google Scholar]
  50. O’Brien F., Mooney J., Ryan D., Powell E., Tiney M., Smith P. R., Powell R. 1994; Detection ot Aeromonas salmonicida, causal agent of furunculosis in salmonid fish, from the tank effluent of hatchery-reared Atlantic salmon smolts. Appl. Environ. Microbiol. 60:3874–3877
    [Google Scholar]
  51. Osborn A. M., Bruce K. D., Strike P., Ritchie D. A. 1993; Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from gram-negative soil bacteria indistinguishable by DNA-DNA hybridization. Appl. Environ. Microbiol. 59:4024–4030
    [Google Scholar]
  52. Osterhout G. J., Shull V. H., Dick J. D. 1991; Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J. Clin. Microbiol. 29:1822–1830
    [Google Scholar]
  53. Popoff M. 1984 Genus Aeromonas Kluyver and van Niel 1936, 398’4A. 545–548 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  54. Popoff M., Véron M. 1976; A taxonomic study of the Aeromonas hydrophila-Aeromonas punctata group. J. Gen. Microbiol. 94:11–22
    [Google Scholar]
  55. Popoff M. Y., Coynault C., Kiredjian M., Lemelin M. 1981; Polynucleotide sequence relatedness among motile Aeromonas species. Curr. Microbiol. 5:109–114
    [Google Scholar]
  56. Schubert R. H. W., Hegazi M. 1988; Aeromonas eucrenophila species nova Aeromonas caviae a later and illegitimate synonym of Aeromonas punctata. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 268:34–39
    [Google Scholar]
  57. Scott M. 1968; The pathogenicity of Aeromonas salmonicida (Griffin) in sea and brackish water. J. Gen. Microbiol. 50:864–868
    [Google Scholar]
  58. Smibert R. M., Krieg N. R. 1981 General characterization. 409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Briggs Phillips G.ed Manual of methods for general microbiology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  59. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by electrophoresis. J. Mol. Biol. 98:503–517
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1165
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1165
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error