sp. nov., a Sulfate Reducer from a Water-Oil Separation System Free

Abstract

A mesophilic, gram-negative, vibrio-shaped, marine, acetate-oxidizing sulfate reducer (strain B54) was isolated from a water-oil separation system on a North Sea oil platform. The optimum conditions for growth were 33°C, pH 6.8 to 7.0, and concentrations of NaCI and MgCl 6HO of at least 1 and 0.3%, respectively. Of various organic acids tested, only acetate was used as an electron and carbon source. The presence of 2-oxoglutarate:dye oxidoreductase suggests acetate oxidation via an operative citric acid cycle. Even though growth of most strains (including strain B54) did not occur on hydrogen, hydrogenase was detected at low activity. The growth yields were 4.6, 13.1, and 9.6 g of (dry weight) cells per mol of acetate oxidized with sulfate, sulfite, and thiosulfate, respectively, as electron acceptors. Strain B54 was able to fix dinitrogen. Desulforubidin and cytochromes of the c and b types were present. The G+C content of the DNA was 47 mol%. Strain B54 is most closely related to , with a 16S rDNA sequence similarity of 98.1%. The DNA-DNA relatedness between them was 40.5%. On the basis of differences in genotypic, pheno-typic, and immunological characteristics, we propose that strain B54 is a member of a new species, . It can be easily identified and distinguished from other species by its large, vibrio-shaped cells.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1124
1997-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1124.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1124&mimeType=html&fmt=ahah

References

  1. Barth T., Riis M. 1992; Interactions between organic anions in formation waters and reservoir mineral phases. Org. Geochem. 19:455–482
    [Google Scholar]
  2. Beeder J., Nilsen R. K., Rosnes J. T., Torsvik T., Lien T. 1994; Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl. Environ. Microbiol. 60:1227–1231
    [Google Scholar]
  3. Beeder J., Lien T., Torsvik T. 1990 Immunological properties of Desulfobacter. 359–360 Belaich J. P., Bruschi M., Garcia J. L.ed Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer Plenum; New York, N.Y.:
    [Google Scholar]
  4. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus norvegicus gen. nov., sp.nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164:331–336
    [Google Scholar]
  5. Beji A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from gram-negative bacilli. Anal. Biochem. 162:18–23
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254
    [Google Scholar]
  7. Brink D. E., Vance I., White D. C. 1994; Detection of Desulfobacter in oil field environments by non-radioactive DNA probes. Appl. Microbiol. Biotechnol. 42:469–475
    [Google Scholar]
  8. Burnette W. N. 1981; “Western blotting”: electrophoretic transfer of proteins from SDS-PAGE to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 195:112–203
    [Google Scholar]
  9. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  10. Christensen B., Torsvik T., Lien T. 1992; Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl. Environ. Microbiol. 58:1244–1248
    [Google Scholar]
  11. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 5:83–91
    [Google Scholar]
  12. De Ley J., Cattoir H., Reynarts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  13. De Soete G. 1983; A least squares algorithm for fitting trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  14. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  15. Gerhardt P., Murray R. G. E., Wood W., Krieg N. R.ed 1994 Methods for general and molecular bacteriology. 635 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  16. Hansen T. A. 1994; Metabolism of sulfate-reducing prokaryotes. Antonie van Leeuwenhoek 66:165–185
    [Google Scholar]
  17. He S.-H., Woo S. B., DerVartanian D. V., Le Gall J., Peck H. D. Jr. 1989; Effects of acetylene on hydrogenases from the sulfate reducing and methanogenic bacteria. Biochem. Biophys. Res. Commun. 161:127–133
    [Google Scholar]
  18. Huß V. A R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  19. Janke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York, N.Y.:
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  22. Lee J., Yi C., LeGall J., Peck H. D. 1973; Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J. Bacteriol. 115:453–455
    [Google Scholar]
  23. Lien T., Torsvik T. 1990 Hydrogenase in Desulfobacter. 519–520 Belaich J. P., Bruschi M., Garcia J. L.ed Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer Plenum; New York, N.Y.:
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  25. Moller D., Schauder R., Fuchs G., Thauer R. K. 1987; Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch. Microbiol. 148:202–207
    [Google Scholar]
  26. Moller-Zinkhan D., Thauer R. K. 1988; Membrane-bound NADPH dehydrogenase- and ferredoxin:NADP oxidoreductase activity involved in electron transport during acetate oxidation to CO2 in Desulfobacterpostgatei. Arch. Microbiol. 150:145–154
    [Google Scholar]
  27. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocistemum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46:397–402
    [Google Scholar]
  28. Oude Elferink S. J. W. H., Maas R. N., Harmsen H. J. M., Stams A. J. M. 1995; Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164:119–124
    [Google Scholar]
  29. Pfennig N., Wagner S. 1986; An improved method of preparing wet mounts for photo-micrographs of microorganisms. J. Microbiol. Methods 4:303–306
    [Google Scholar]
  30. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic Clostridia. FEMS Microbiol. Lett. 113:125–128
    [Google Scholar]
  31. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol. 16:224–226
    [Google Scholar]
  32. Ramsing N. B., Kuhl M., Jorgensen B. B. 1993; Distribution of sulfatereducing bacteria, O2 and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 59:3840–3849
    [Google Scholar]
  33. Raskin L., Zheng D., Griffin M. E., Stroot P. G., Misa P. 1995; Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie van Leeuwenhoek 68:297–308
    [Google Scholar]
  34. Rosnes J. T., Torsvik T., Lien T. 1991; Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57:2302–2307
    [Google Scholar]
  35. Samain E., Dubourguier H. C., Albagnac G. 1984; Isolation and characterization of Desulfobulbus elongatus sp. nov. from mesophilic industrial digester. Syst. Appl. Microbiol. 5:391–401
    [Google Scholar]
  36. Schauder R., Preuss A., Jetten M., Fuchs G. 1989; Oxidative and reductive acetyl CoA/carbon monoxide pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch. Microbiol. 151:84–89
    [Google Scholar]
  37. Smith L. 1978; Bacterial cytochromes and their spectral characterization. Methods Enzymol. 53:202–212
    [Google Scholar]
  38. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  39. Voordouw G., Armstrong S. M., Reimer M. F., Fouts B., Telang A. J., Shen Y., Gevertz D. 1996; Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfatereducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62:1623–1629
    [Google Scholar]
  40. Widdel F. 1987; New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148:286–291
    [Google Scholar]
  41. Widdel F., Bak F. 1992 Gram-negative mesophilic sulfate-reducing bacteria. 3352–3378 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes. A handbook on the biology of bacteria: ecology, physiology, isolation, identification, applications, 2nd. Springer-Verlag; New York, N.Y.:
    [Google Scholar]
  42. Widdel F., Kohring G. W., Mayer F. 1983; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. and sp. nov. and Desulfonema magnum sp. nov. Arch. Microbiol. 129:286–294
    [Google Scholar]
  43. Widdel F., Pfennig N. 1981; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. and sp. nov. Arch. Microbiol. 129:395–400
    [Google Scholar]
  44. Widdel F., Pfennig N. 1977; A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112:119–122
    [Google Scholar]
  45. Widdel F., Hansen T. A. 1992 The dissimilatory sulfate- and sulfurreducing bacteria. 583–624 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes: a handbook on the biology of bacteria: ecology, physiology, identification, applications, 2nd. Springer-Verlag; New York, N.Y.:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1124
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1124
Loading

Data & Media loading...

Most cited Most Cited RSS feed