1887

Abstract

sp. nov. was isolated from the perennially cold, anoxic hypolimnion of Ace Lake in the Vesfold Hills of Antarctica. The cells were psychrophilic, exhibiting most rapid growth at 15°C and no growth at temperatures above 18 to 20°C. The cells were irregular, nonmotile coccoids (diameter, 1.2 to 2.5 μm) that occurred singly and grew by CO reduction by using H as a reductant Formate could replace H, but growth was slower. Acetate, methanol, and trimethylamine were not catabolized. Cells grew with acetate as the only organic compound in the culture medium, but growth was much faster in medium also supplemented with peptones and yeast extract. The cells were slightly halophilic; good growth occurred in medium supplemented with 350 to 600 mM Na, but no growth occurred with 100 or 850 mM Na. The pH range for growth was 6.5 to 7.9; no growth occurred at pH 6.0 or 8.5. Growth was slow (maximum specific growth rate, 0.24 day; doubling time, 2.9 days). This is the first report of a psychrophilic methanogen growing by CO reduction.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1068
1997-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1068.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1068&mimeType=html&fmt=ahah

References

  1. Aldrich H. C., Mollenhauer H. H. 1986 Secrets of successful embedding, sectioning, and imaging. 101–132 Aldrich H. C., Todd W. J.ed Ultrastructure techniques for microorganisms Plenum Press; New York, N.Y.:
    [Google Scholar]
  2. Applied Biosystems, Inc 1992 Taq DyeDeoxy terminator cycle sequencing kit user bulletin no. 901497, revision E. Applied Biosystems, Inc.; Foster City, Calif:
    [Google Scholar]
  3. Boone D. R., Johnson R. L., Liu Y. 1989; Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735–1741
    [Google Scholar]
  4. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int. J. Syst. Bacteriol. 38:212–219
    [Google Scholar]
  5. Boone D. R., Whitman W. B., Rouvière P. 1993 Diversity and taxonomy of methanogens. 35–80 Ferry J. G.ed Methanogenesis: ecology, physiology, biochemistry, and genetics Chapman & Hall; New York, N.Y.:
    [Google Scholar]
  6. Brosius J., Palmer M. L., Kennedy P. J., Noller H. R. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  7. Felsenstein J. 1993 PHYLIP (phylogeny inference package), version 3.5c. University of Washington; Seattle.:
    [Google Scholar]
  8. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284
    [Google Scholar]
  9. Franzmann P. D., Roberts N. J., Mancuso C. A., Burton H. R., McMeekin T. A. 1991; Methane production in meromictic Ace Lake, Antarctica. Hydrobiologia 210:191–201
    [Google Scholar]
  10. Franzmann P. D., Springer N., Ludwig W., Conway de Macario E., Rohde M. 1992; A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst. Appl. Microbiol. 15:573–581
    [Google Scholar]
  11. Grahame D. A., Stadtman T. C. 1993 Redox enzymes of methanogens: physicochemical properties of selected, purified oxidoreductases. 335–359 Ferry J. G.ed Methanogenesis: ecology, physiology, biochemistry, and genetics Chapman & Hall; New York, N.Y.:
    [Google Scholar]
  12. Johnson J. L. 1981 Genetic characterization. 450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  13. Jones W. J., Paynter M. J. B., Gupta R. 1983; Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch. Microbiol. 135:91–97
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  15. Kadam P. C., Ranade D. R., Mandelco L., Boone D. R. 1994; Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations. Int. J. Syst. Bacteriol. 44:603–607
    [Google Scholar]
  16. Kadam P. K., Boone D. R. 1995; Physiological characterization of Methanolobus vulcani. Int. J. Syst. Bacteriol. 45:400–402
    [Google Scholar]
  17. Macario A. J. L., Conway de Macario E. 1985; Antibodies for methanogenic biotechnology. Trends Biotechnol. 3:204–208
    [Google Scholar]
  18. Macario A J. L., Conway de Macario E. 1983; Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst. Appl. Microbiol. 4:451–458
    [Google Scholar]
  19. Macario A. J. L., Conway de Macario E. 1985 Monoclonal antibodies of predefined molecular specificity for identification and classification of methanogens and for probing their ecological niches. 213–247 Macario A. J. L., Conway de Macario E.ed Monoclonal antibodies against bacteria 2 Academic Press; Orlando, Fla.:
    [Google Scholar]
  20. Maestrojuan G. M., Boone D. R. 1991; Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol. 41:267–274
    [Google Scholar]
  21. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res. 24:82–85
    [Google Scholar]
  22. Mancuso C. A, Franzmann P. D., Burton H. R., Nichols P. D. 1990; Microbial community structure and biomass estimates of a methanogenic Antarctic lake ecosystem as determined by phospholipid analyses. Microb. Ecol. 19:73–95
    [Google Scholar]
  23. Matthews E. 1993 Wetlands. 314–361 Khalil M. A. K.ed Atmospheric methane: sources, sinks, and role in global change1–13 Springer-Verlag; Berlin, Germany.:
    [Google Scholar]
  24. McBride L. J., Koepf S. M., Gibbs R. A., Salser W., Mayrand P. E., Hunkapiller M. W., Kronick M. N. 1989; Automated DNA sequencing methods involving polymerase chain reaction. Clin. Chern. 35:2196–2201
    [Google Scholar]
  25. Ni S., Boone D. R. 1991; Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int. J. Syst. Bacteriol. 41:410–416
    [Google Scholar]
  26. Oremland R. S., Boone D. R. 1994; Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int. J. Syst. Bacteriol. 44:573–575
    [Google Scholar]
  27. Oremland R. S., Marsh L. M., Polcin S. 1982; Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature (London) 296:143–145
    [Google Scholar]
  28. Powell G. E. 1983; Interpreting gas kinetics of batch culture. Biotechnol. Lett. 5:437–440
    [Google Scholar]
  29. Ratkowsky D. A, Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154:1222–1226
    [Google Scholar]
  30. Ratkowsky D. A., Olley J., McMeekin T. A., Ball A. 1982; Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149:1–5
    [Google Scholar]
  31. Romesser J. A., Wolfe R. S., Mayer F., Spiess E., Walther-Mauruschat A. 1979; Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch. Microbiol. 121:147–153
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning, 2nd. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  33. Swofford D. L. 1993 PAUP: phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey; Champaign.:
    [Google Scholar]
  34. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703
    [Google Scholar]
  35. Woese C. Personal communication
  36. Wolin E. A, Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chern. 238:2882–2886
    [Google Scholar]
  37. Zhilina T. N., Zavarzin G. A. 1991; Low temperature methane production by a pure culture of Methanosarcina sp. Dokl. Akad. Nauk SSSR 317:1242–1245
    [Google Scholar]
  38. Zwietering M. H., de Koos J. T., Hasenack B. E., de Wit J. C., van’t Riet K. 1991; Modeling of bacterial growth as a function of temperature. Appl. Environ. Microbiol. 57:1094–1101
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1068
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1068
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error