1887

Abstract

Thirty-three fluorescent strains isolated from tomato pith necrosis (FPTPN strains) and 89 strains were studied by numerical taxonomy. In the dendrogram of distances, the strains constituted a single phenon (phenon 1), whereas 17 of the 33 FPTPN strains clustered in a separate phenon (phenon 2). The other 16 FPTPN strains were included in phena consisting of well-characterized fluorescent species or were isolated phenotypes. Phena 1 and 2 were distinguished by fluorescence on King B medium, accumulation of poly-β;-hydroxybutyrate, production of levan, and assimilation of sorbitol. DNA-DNA hybridization showed that is a true genomic species (66 to 100% DNA relatedness) and that the FPTPN strains of phenon 2 were divided into three genomic groups. Genomic groups 1 and 2 were not distinct from each other phenotypcally, and genomic group 3 could be distinguished from genomic groups 1 and 2 only on the basis of assimilation of citraconate and laevulinate. Genomic groups 1 and 2 are related to (40 to 55% DNA relatedness), whereas genomic group 3 is less closely related to (20 to 23% DNA relatedness). The lipopolysaccharide patterns on electrophoresis gels and fatty acid profiles of strains belonging to genomic groups 1 through 3 are different from each other and from the lipopolysaccharide patterns and fatty acid profiles of . However, cross-reactions were observed between and the FPTPN strain genomic groups, indicating that there are common epitopes of the lipopolysaccharides. The three FPTPN strain genomic groups were not named as species but were designated genomospecies FP1, FP2, and FP3.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1020
1997-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1020.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1020&mimeType=html&fmt=ahah

References

  1. Alarcon B., Lopez M. M., Cambra M., Gorris M. T., Guerri J. 1990; Differentiation of Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. atroseptica isolated from potato by Western blot and subsequent indirect ELISA. J. Appl. Bacteriol. 69:17–24
    [Google Scholar]
  2. Alippi A. M., Ronco L., Alippi H. E. 1993; Tomato pith necrosis caused by Pseudomonas corrugata in Argentina. Plant Dis. 77:428
    [Google Scholar]
  3. Alivizatos A. S. 1984 Aetiology of tomato pith necrosis in Greece. 55–57Proceedings of the 2nd Working Group on Pseudomonas syringae Pathovars, Sounion Hellenic Phytopathological Society; Athens, Greece.:
    [Google Scholar]
  4. Ayers S. H., Rupp P., Johnson W. T. 1919 A study of alkali-forming bacteria in milk. Bulletin no. 782. U. S. Department of Agriculture; Washington, D.C.:
    [Google Scholar]
  5. Brenner D. J., McWorter A C., Leete Knutson J. K., Steigerwalt A. G. 1982; Escherichia vulneris·. a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15:1133–1140
    [Google Scholar]
  6. Catara V. 1994 Ph.D. thesis University of Catania; Catania, Italy:
  7. Catara V., Albense G. 1993; La necrosi del midollo del pomodoro in Sicilia. Inf. Fitopatol. 9:42–44
    [Google Scholar]
  8. Clark R. G., Watson D. R. 1986; New plant disease record in New Zealand: tomato pith necrosis caused by Pseudomonas corrugata. N. Z. J. Agric. Res. 29:105–109
    [Google Scholar]
  9. Crosa J. M., Brenner D. J., Falkow S. 1973; Use of a single-strandspecific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol. 115:904–911
    [Google Scholar]
  10. Descamps P., Véron M. 1981; Une méthode de choix des caractères d’identification basée sur le théorème de Bayes et la mesure de l’information. Ann. Inst. Pasteur/Microbiol. (Paris) 1328:157–170
    [Google Scholar]
  11. De Vos P., Van Landshoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationship and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid-ribosomal ribonucleic acid hybridization. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  12. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  13. Dhanvantari B. N. 1990; Stem necrosis of greenhouse tomato caused by a novel Pseudomonas sp. Plant Dis. 74:124–127
    [Google Scholar]
  14. Fiori M. 1992; A new bacterial disease of Chrysanthemum·, a stem rot by Pseudomonas corrugata Roberts et Scarlett. Phytopathol. Mediterr. 31:110–114
    [Google Scholar]
  15. Fiori M., Corda P., Carta C. 1983; Pseudomonas corrugata Roberts et Scarlett agente della necrosi del midollo dei pomodoro (Licopersicon esculentum Mill). Riv. Patol. Veg. 19:21–27
    [Google Scholar]
  16. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproductibility and correlation study of three deoxynucleic acid hybridization procedures. Curr. Microbiol. 4:325–330
    [Google Scholar]
  17. Hildebrand D. C. 1971; Pectate and pectine gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology 61:1430–1436
    [Google Scholar]
  18. Hitchcock P. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 154:269–277
    [Google Scholar]
  19. Hu F. P., Young J. M., Triggs C. M. 1991; Numerical analysis and determinative tests for nonfluorescent plant-pathogenic Pseudomonas spp. and genomic analysis and reclassification of species related to Pseudomonas avenae Manns 1909. Int. J. Syst. Bacteriol. 41:516–525
    [Google Scholar]
  20. Johnson J. L. 1973; Use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol. 23:308–315
    [Google Scholar]
  21. Jones J. B., Jones J. P., Stall R. E., Miller J. W. 1983; Occurrence of stem necrosis on field-grown tomatoes incited by Pseudomonas corrugata in Florida. Plant Dis. 67:425–426
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  23. Lai M., Opgenorth D. C., White J. B. 1983; Occurrence of Pseudomonas corrugata on tomato in California. Plant Dis. 67:110–112
    [Google Scholar]
  24. Leliott R. A., Billing E., Hayward A. C. 1966; A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol. 29:470–489
    [Google Scholar]
  25. Lopez M. M., Siverio F., Albiach M. R., Garcia F., Rodriguez R. 1994; Characterization of Spanish isolates of Pseudomonas corrugata from tomato and pepper. Plant Pathol. 43:80–90
    [Google Scholar]
  26. Lukezic F. L. 1979; Pseudomonas corrugata, a pathogen of tomato isolated from symptomless alfalfa roots. Phytopathology 69:27–31
    [Google Scholar]
  27. Manuur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  28. Miller L. T., Berger T. 1985 Bacterial identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Application Note 228–241. Hewlett-Packard Co.; Palo Alto, Calif.:
    [Google Scholar]
  29. Ostle A., Holt J. G. 1975; Nile Blue A as a fluorescent stain for poly-3-hydroxybutyrate. Appl. Environ. Microbiol. 44:238–240
    [Google Scholar]
  30. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic implications. J. Appl. Bacteriol. 41:335–340
    [Google Scholar]
  31. Palleroni N. J. 1984 Genus I. Pseudomonas Migula 1894. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams and Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  32. Paulin J. P. 1979 Nécrose de la moëlle ou moëlle noire. 505 Les maladies des plantes Association de Coordination Technique Agricole; Paris, France.:
    [Google Scholar]
  33. Prunier J. P., Kaiser P. 1964; Etude de l’activité pectinolytique chez des bactéries phytopathogènes et saprophytes des plantes. I. Recherche des enzymes pectinolytiques. Ann. Epiphyt. (Paris) 15:205–209
    [Google Scholar]
  34. Rhodes M. E. 1958; The cytology of Pseudomonas spp. as revealed by silver-plating staining method. J. Gen. Microbiol. 18:639–648
    [Google Scholar]
  35. Scarlett C. M., Fletcher J. T., Roberts P., Leliott R. A. 1978; Tomato pith necrosis by Pseudomonas corrugata n. sp. Ann. Appl. Biol. 88:105–114
    [Google Scholar]
  36. Schaad N. W. 1988 Laboratory guide for identification of plant pathogenic bacteria. American Phytopathological Society; St. Paul, Minn.:
    [Google Scholar]
  37. Scortichini M. 1989; Occurrence in soil and primary infections of Pseudomonas corrugata Roberts and Scarlett. J. Phytopathol. 125:33–40
    [Google Scholar]
  38. Siverio F. 1994 Ph.D. thesis University of La Laguna; Tenerife, Spain:
  39. Siverio F., Cambra M., Gorris M. T., Corzo J., Lopez M. M. 1993; Lipopolysaccharides as determinants of serological variability in Pseudomonas corrugata. Appl. Environ. Microbiol. 59:1805–1812
    [Google Scholar]
  40. Siverio F., Carbonell A. A., Garcia F., Lopez M. M. 1996; Characteristics of the whole cell fatty acid profiles of Pseudomonas corrugata. Eur. J. Plant Pathol. 102:519–526
    [Google Scholar]
  41. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman; San Francisco, Calif:
    [Google Scholar]
  42. Stead D. E. 1992; Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42:281–295
    [Google Scholar]
  43. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J. Appl. Bacteriol. 72:315–321
    [Google Scholar]
  44. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharide in polyacrylamide gels. Anal. Biochem. 119:115–119
    [Google Scholar]
  45. Van Outryve M. F., Cerez M. T., De Cleene M., Swings J., Mew T. W. 1992 Pathogenic pseudomonads associated with steath rot and grain discoloration of rice, p. P1/AS. Abstracts of the 8th International Conference on Plant Pathogenic Bacteria, Versailles INRA/ORSTOM Editions; Paris, France.:
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  47. Wilkie J. P., Dye D. W. 1974; Pseudomonas cichorii causing tomato and celery diseases in New Zealand. N. Z. J. Agric. Res. 17:123–130
    [Google Scholar]
  48. Young J. M., Takikawa Y., Gardan L., Stead D. E. 1992; Changing concepts in the taxonomy of plant pathogenic bacteria. Annu. Rev. Phytopathol. 30:67–105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1020
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error