1887

Abstract

A new thermophilic, xylanolytic, strictly anaerobic, rod-shaped bacterium, strain SEBR 7054, was isolated from an African oil-producing well. Based on the presence of an outer sheath (toga) and 16S rRNA sequence analysis data, this organism was identified as a member of the genus . Strain SEBR 7054 possessed lateral flagella, had a G+C content of 50 mol%, produced traces of ethanol from glucose but no lactate, and grew optimally in the presence of 0 to 0.2% NaCl at 70°C. Its phenotypic and phylogenetic characteristics clearly differed from those reported for the five previously validly described species. Therefore, we propose that strain SEBR 7054 is a member of a new species of the genus sp. nov. The type strain of is SEBR 7054 (= DSM 11164).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1013
1997-10-01
2024-03-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1013.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1013&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int. J. Syst. Bacteriol. 46:265–269
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum R. J., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  3. Bernard F. P., Connan J., Magot M. 1992 Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques. 1–10 Proceedings of the 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers Society of Petroleum Engineers; Richardson, Tex.:
    [Google Scholar]
  4. Bhupathiraju V. K., McInerney M. J. 1993; Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11:19–34
    [Google Scholar]
  5. Cayol J.-L., Ollivier B., Lawson Anani Soh A., Fardeau M.-L., Ageron E., Grimont P. A. D., Prensier G., Guezennec J., Magot M., Garcia J.-L. 1994; Haloincola saccharolytica subsp. senegalensis subsp. nov., isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica. Int. J. Syst. Bacteriol. 44:805–811
    [Google Scholar]
  6. Childers S. E., Vargas M., Noll K. M. 1992; Improved methods for cultivation of the extremely thermophilic bacterium Thermotoga neapolitana. Appl. Environ. Microbiol. 58:3949–3953
    [Google Scholar]
  7. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  8. Crolet J. L., Daumas S., Magot M. 1993 pH regulation by sulfatereducing bacteria. 1–18 Corrosion 93 National Association of Corrosion Engineers; Houston, Tex.:
    [Google Scholar]
  9. Davey M. E., Wood W. A., Key R., Nakamura K., Stahl D. A. 1993; Isolation of three species of Geotoga and Petrotoga·, two new genera, representing a new lineage in the bacterial line of descent distantly related to the “ Thermotogales. “ Syst. Appl. Microbiol. 16:191–200
    [Google Scholar]
  10. De Araujo-Jorge T. C., Melo Coutinho C. M. L., Vargas De Aguiar L. E. 1992; Sulphate-reducing bacteria associated with biocorrosion: a review. Mem. Inst. Oswaldo Cruz Rio de J. 87:329–337
    [Google Scholar]
  11. Deming J. W., Baross J. A. 1986; Solid medium for culturing black smoker bacteria at temperature to 120°C. Appl. Environ. Microbiol. 51:238–243
    [Google Scholar]
  12. Dzierzewicz Z., Cwalina B., Weglarz L., Glab S. 1992; Isolation and evaluation of corrosive aggressivity of wild strains of sulphate-reducing bacteria. Acta Microbiol. Pol. 41:211–221
    [Google Scholar]
  13. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett. 113:327–332
    [Google Scholar]
  14. Fardeau M.-L., Faudon C., Cayol J.-L., Magot M., Patel B. K. C., Ollivier B. 1996; Effect of thiosulfate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacter finnii and a Thermoanaerobacter sp. isolated from oil field water. Res. Microbiol. 147:159–165
    [Google Scholar]
  15. Felsentein J. 1993 PHYLIP (phylogenetic inference package), version 3.51c. Department of Genetics; University of Washington, Seattle.:
    [Google Scholar]
  16. Ferris F. G., Jack T. R., Bramhill B. J. 1992; Corrosion products associated with attached bacteria at an oil field water injection plant. Can. J. Microbiol. 38:1320–1324
    [Google Scholar]
  17. Grassia G. S., McLean K. M., Glenat P., Bauld J., Sheehy A. J. 1996; A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21:47–58
    [Google Scholar]
  18. Huber R., Langworthy T. A., König H., Thomm M., Woese C. R., Sleytr U. W., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144:324–333
    [Google Scholar]
  19. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov. represents a new genus of thermophilic eubacteria within the “Thermotogales”. Syst. Appl. Microbiol. 12:32–37
    [Google Scholar]
  20. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales.” Arch. Microbiol. 154:105–111
    [Google Scholar]
  21. Huser B. A., Patel B. K. C., Morgan H. W., Daniel R. M. 1986; Isolation and characterization of a novel extremely thermophilic, anaerobic chemoorganotrophic eubacterium. FEMS Microbiol. Lett. 37:121–127
    [Google Scholar]
  22. Jannasch H. W., Huber R., Belkin S., Stetter K. O. 1988; Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch. Microbiol. 150:103–104
    [Google Scholar]
  23. Jeanthon C., Reysenbach A.-L., L’Haridon S., Gambacorta A., Pace N. R., Glenat P., Prieur D. 1995; Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164:91–97
    [Google Scholar]
  24. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  25. L’Haridon S., Reysenbach A.-L., Glenat P., Prieur D., Jeanthon C. 1995; Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224
    [Google Scholar]
  26. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  27. Magot M., Carreau L., Cayol J.-L., Ollivier B., Crolet J.-L. 1994 Sulphide-producing, not sulphate-reducing anaerobic bacteria presumptively involved in bacterial corrosion. 293 Sequeira C. A. C.ed Proceedings of the 3rd European Federation of Corrosion Workshop on Microbial Corrosion The Institute of Materials; London, United Kingdom.:
    [Google Scholar]
  28. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res. 24:82–85
    [Google Scholar]
  29. McInerney M. J., Westlake D. W. S. 1990 Microbially enhanced oil recovery. 409–455 Ehrlich H. L., Brierley C. L.ed Microbial mineral recovery McGraw Hill; New York, N.Y.:
    [Google Scholar]
  30. Mesbah M., Premchandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  31. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426–428
    [Google Scholar]
  32. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec, nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141:63–69
    [Google Scholar]
  33. Ratto M., Mathrani I. M., Ahring B., Viikari L. 1994; Application of thermostable xylanase of Dictyoglomus sp. in enzymatic treatment of kraft pulps. Appl. Microbiol. Biotechnol. 41:130–133
    [Google Scholar]
  34. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Prensier G., Egan A., Garcia J.-L., Ollivier B. 1995; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45:308–314
    [Google Scholar]
  35. Ravot G., Ollivier B., Fardeau M.-L., Patel B. K. C., Andrews K. T., Magot M., Garcia J.-L. 1996; L-Alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea. a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62:2657–2659
    [Google Scholar]
  36. Ravot G., Ollivier B., Magot M., Patel B. K. C., Crolet J.-L., Fardeau M.-L., Garcia J.-L. 1995; Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl. Environ. Microbiol. 61:2053–2055
    [Google Scholar]
  37. Ravot G., Ollivier B., Patel B. K. C., Magot M., Garcia J.-L. 1996; Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. Int. J. Syst. Bacteriol. 46:321–323
    [Google Scholar]
  38. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett. 113:81–86
    [Google Scholar]
  39. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic Archaea are thriving in deep North Sea and Alaskan reservoirs. Nature 365:743–745
    [Google Scholar]
  40. Sunna A., Antranikian G. 1996; Growth and production of xylanolytic enzymes by the extreme thermophilic anaerobic bacterium Thermotoga thermarum. Appl. Microbiol. Biotechnol. 45:671–676
    [Google Scholar]
  41. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60:407–438
    [Google Scholar]
  42. Widdel F. 1980; Anaerobacter abbau von fettsauren und benzosaure durch neu isolierte arten sulfatreduzierender bakterien. Ph.D. thesis University of Gottingen; Gottingen, Germany:
    [Google Scholar]
  43. Wiegel J., Ljungdahl L. G., Rawson J. R. 1979; Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139:800–810
    [Google Scholar]
  44. Windberger E., Huber R., Trincone A., Fricke H., Stetter K. O. 1989; Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch. Microbiol. 151:506–512
    [Google Scholar]
  45. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 13:161–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1013
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error