1887

Abstract

Abstract

, , , and Norway 4 are closely related as determined by a 16S rRNA comparison (levels of relatedness, 0.976 to 0.997) and are distinct on the basis of levels of DNA-DNA similarity (11.1 to 27.4%), genomic restriction fragment length polymorphism patterns, and certain phenotypic characteristics. We proposed that Norway 4 be renamed comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-889
1997-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-889.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-889&mimeType=html&fmt=ahah

References

  1. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol. 15:23–31
    [Google Scholar]
  2. Cheng H. P., Lessie T. G. 1994; Multiple replicons constituting the genome of Pseudomonas cepacia 17616. J. Bacteriol. 176:4034–4042
    [Google Scholar]
  3. Chu G. 1990; Pulsed-field gel electrophoresis: theory and practice. Methods 1:129–142
    [Google Scholar]
  4. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172:3609–3619
    [Google Scholar]
  5. Fauque G., LeGall J., Barton L. L. 1991; Sulfate-reducing and sulfur-reducing bacteria. 271–337 Shively J. M., Barton L. L. Variations in autotrophic life Academic Press; New York, N.Y.:
    [Google Scholar]
  6. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  7. Grothues D., Tummler B. 1991; New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analysis of Pseudomonas species. Mol. Microbiol. 5:2763–2776
    [Google Scholar]
  8. Johnson J. L. 1991; DNA reassociation experiments. 21–44 Stackebrandt E., Goodfellow M. Nucleic acid techniques in bacterial systematics John Wiley and Sons; New York, N.Y.:
    [Google Scholar]
  9. Kawahara F. K. 1971; Gas chromatographic analysis of mercaptans, phenols and organic acids in surface waters with use of pentafluorobenzyl derivatives. Environ. Sci. Technol. 5:235–239
    [Google Scholar]
  10. Kuo C.-W., Genthner B. R. Sharak. 1996; Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl. Environ. Microbiol. 62:2317–2323
    [Google Scholar]
  11. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal RNA Database Project. Nucleic Acids Res. 21:3021–3023
    [Google Scholar]
  12. Lee J. P., Yi C. S., LeGall J., Peck H. D. 1973; Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J. Bacteriol. 115:453–455
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  14. McClelland M., Jones R., Patel Y., Nelson M. 1987; Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res. 15:5985–6005
    [Google Scholar]
  15. Miller J. D. A., Neumann P. M., Elford L., Wakerley D. S. 1970; Malate dismutation by Desulfovibrio. Arch. Microbiol. 71:214–219
    [Google Scholar]
  16. Miller J. D. A., Saleh A. M. 1964; A sulphate-reducing bacterium containing cytochrome c3 but lacking desulfoviridin. J. Gen. Microbiol. 37:419–423
    [Google Scholar]
  17. Miller J. D. A., Wakerley D. S. 1966; Growth of sulphate-reducing bacteria by fumarate dismutation. J. Gen. Microbiol. 43:101–107
    [Google Scholar]
  18. Nazina T. N., Poltaraus A. B., Rozanova E. P. 1987; Estimation of genetic relationship of rod-shaped asporogenic sulfate-reducing bacteria. Microbiology (Engl. Transi. Mikrobiologiya) 56:669–672
    [Google Scholar]
  19. Pfennig N., Widdel F., Truper H. G. 1981; The dissimilatory sulfate-reducing bacteria. 926–940 Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G. The prokaryotes Springer-Verlag; Berlin, Germany:
    [Google Scholar]
  20. Postgate J. R. 1952; Growth of sulphate-reducing bacteria in sulphate-free media. Research (London) 5:189–190
    [Google Scholar]
  21. Postgate J. R. 1959; A diagnostic reaction of Desulphovibrio desulphuricans. Nature (London) 183:481–482
    [Google Scholar]
  22. Postgate J. R., Campbell L. L. 1966; Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30:732–738
    [Google Scholar]
  23. Raskin L., Capman W. C., Kane M. D., Rittmann B. R., Stahl D. A. 1996; Critical evaluation of membrane supports for use in quantitative hybridizations. Appl. Environ. Microbiol. 62:300–303
    [Google Scholar]
  24. Rozanova E. P., Nazina T. N. 1976; A mesophilic, sulfate-reducing, rod-shaped, nonsporeforming bacterium. Microbiology (Engl. Transi. Mikrobiologiya) 45:711–716
    [Google Scholar]
  25. Rozanova E. P., Nazina T. N., Galushko A. S. 1988; Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov.. Microbiology (Engl. Transi. Mikrobiologiya) 57:514–520
    [Google Scholar]
  26. Sharak Genthner B. R., Davis C. L., Bryant M. P. 1981; Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19
    [Google Scholar]
  27. Sharak Genthner B. R., Mundfrom G., Devereux R. 1994; Characterization of Desulfomicrobium escambium sp. nov. and proposal to assign Desulfovibrio desulfuricans strain Norway 4 to the genus Desulfomicrobium. Arch. Microbiol. 161:215–219
    [Google Scholar]
  28. Sharak Genthner B. R., Price W. A., Pritchard P. H. 1989; Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl. Environ. Microbiol. 55:1466–1471
    [Google Scholar]
  29. Sharak Genthner B. R., Price W. A., Pritchard P. H. 1989; Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl. Environ. Microbiol. 55:1472–1476
    [Google Scholar]
  30. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemoautotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  32. Weisburg W. G., Barnes S. M., Pelleteir D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-889
Loading
/content/journal/ijsem/10.1099/00207713-47-3-889
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error