1887

Abstract

The 16S-23S rRNA intergenic spacer (IGS) regions found in six Listeria species were characterized. PCR amplification of the 16S-23S IGS with a “generic primer” set generated products of about 340 bp (small) and 550 to 590 bp (large) with DNA from all strains tested. Seven serotype 4b strains and one . serotype 4d strain also had an additional PCR product of ca. 360 bp. The 360-bp PCR product from one of these . serotype 4b strains was identical in nucleotide sequence to the small 340-bp IGS, except that it contained an 18-bp tandem repeat. The small rRNA IGSs of . , . , . , . , and . were 83 to 99% homologous to that of . . The large rRNA IGS of . was 81 to 96% homologous to those of the other species and agreed with current taxonomic division among these species. The nucleotide sequences of the central 274 bp of the large rRNA IGS of strains from seven different . serotypes were highly homologous; however, serotype-specific differences were noted, and four groups were identified within . based on this analysis.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-863
1997-07-01
2022-08-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-863.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-863&mimeType=html&fmt=ahah

References

  1. Barry T., Colleran G., Glennon M., Dunican L. K., Gannon. F. 1991; The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl 1:51–56 (Erratum, 1:149.)
    [Google Scholar]
  2. Berg K. L., Squires C., Squires C. L. 1989; Ribosomal operon antiter-mination: function of leader and spacer region BoxB-BoxA sequences and their conservation in diverse microorganisms. J. Mol. Biol 209:345–358
    [Google Scholar]
  3. Bibb W. F., Gellin B. G., Weaver R., Schwartz B., Plikaytis B. D., Reeves M. W., Pinner R. W., Broome C. V. 1990; Analysis of clinical and food-borne isolates of Listeria monocytogenes in the United States by mul-tilocus enzyme electrophoresis and application of the method to epidemio-logic investigations. Appl. Environ. Microbiol 56:2133–2141
    [Google Scholar]
  4. Bibb W. F., Schwartz B., Gellin B. G., Plikaytis B. D., Weaver R. E. 1989; Analysis of Listeria monocytogenes by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Int. J. Food Microbiol 8:233–239
    [Google Scholar]
  5. Brooks J. L., Back J. P., Kroll R. G. 1992; Direct application to dairy foods of a Lzisrmia-specific oligonucleotide probe to 16S rRNA. Int. J. Food Microbiol 16:303–312
    [Google Scholar]
  6. Burgess J. G., Kawaguchi R., Sakaguchi T., Thornhill R. H., Matsunaga T. 1993; Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rDNA sequences. J. Bacteriol 175:6689–6694
    [Google Scholar]
  7. Collins M. D., Wallbanks S., Lane D. J., Shah J., Nietupski R., Smida J., Dorsch M., Stackebrandt E. 1991; Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol 41:240–246
    [Google Scholar]
  8. Collins-Thompson D. L., Slade P. J., Goethals M. 1991; Use of low molecular mass RNA profiles to identify lactic acid bacteria and related organisms associated with foods. Int. J. Food Microbiol 14:135–143
    [Google Scholar]
  9. Drebót M., Neal S., Schlech W., Rozee K. 1996; Differentiation of Listeria isolates by PCR amplicon profiling and sequence analysis of 16S-23S rRNA internal transcribed spacer loci. J. Appl. Bacteriol 80:174–178
    [Google Scholar]
  10. Emond E., Fliss I., Pandian S. 1993; A ribosomal DNA fragment of Listeria monocytogenes and its use as a genus-specific probe in an aqueous-phase hybridization assay. Appl. Environ. Microbiol 59:2690–2697
    [Google Scholar]
  11. Fleming D. W., Cochi S. L., MacDonald, K. L., Brondum J., Hayes P. S., Plikaytis B. D., Holmes M. B., Audurier A., Broome C. V., Reingold A. L. 1985; Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N. Engl. J. Med 312:404–407
    [Google Scholar]
  12. Golsteyn-Thomas E. J., King R. K., Burchak J., Gannon V. J. 1991; Sensitive and specific detection of Listeria monocytogenes in milk and ground beef with the polymerase chain reaction. Appl. Environ. Microbiol 57:2576–2580
    [Google Scholar]
  13. Graham T. A., Golsteyn-Thomas E. J., Gannon V. J., Thomas J. E. 1996; Genus- and species-specific detection of Listeria monocytogenes using polymerase chain reaction assays targeting the 16S/23S intergenic spacer region of the rRNA operon. Can. J. Microbiol 42:1155–1162
    [Google Scholar]
  14. Graves L. M., Swaminathan B., Reeves M. W., Hunter S. B., Weaver R. E., Plikaytis B. D., Schuchat A. 1994; Comparison of ribotyping and mul-tilocus enzyme electrophoresis for subtyping of Listeria monocytogenes isolates. J. Clin. Microbiol 32:2936–2943
    [Google Scholar]
  15. Greisen K., Loeffelholz M., Purohit A., Leong D. 1994; PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol 32:335–351
    [Google Scholar]
  16. Gurtler V., Stanisich V. A. 1996; New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16
    [Google Scholar]
  17. Jensen M. A., Webster J. A., Straus N. 1993; Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol 59:945–952
    [Google Scholar]
  18. Ji Y. E., Kempsell K. E., Colston M. J., Cox R. A. 1994; Nucleotide sequences of the spacer-1, spacer-2 and trailer regions of the rrn operons and secondary structures of precursor 23S rRNAs and precursor 5S rRNAs of slow-growing mycobacteria. Microbiology 140:1763–1773
    [Google Scholar]
  19. Kita-Tsukamoto K., Oyaizu H., Nanba K., Simidu U. 1993; Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae determined on the basis of 16S rRNA sequences. Int. J. Syst. Bacteriol 43:8–19
    [Google Scholar]
  20. Liu S. L., Sanderson K. E. 1995; Rearrangements in the genome of the bacterium Salmonella typhi. Proc. Natl. Acad. Sci.USA 92:1018–1022
    [Google Scholar]
  21. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol 4:24–33
    [Google Scholar]
  22. Nicoletti V. G., Condorelli D. F. 1993; Optimized PEG method for rapid plasmid DNA purification: high yield from “Midi-Prep.”. BioTechniques 14:532–536
    [Google Scholar]
  23. Schlech W. F., Lavigne P. M., Bortolussi R. A., Allen A. C., Haldane E. V., Wort A. J., Hightower W. A., Johnson S. E., King S. H., Nicholls E. S., Broome C. V. 1983; Epidemic listeriosis-evidence for transmission by food. N. Engl. J. Med 308:203–206
    [Google Scholar]
  24. Thompson D. E., Balsdon J. T., Cai J., Collins M. D. 1992; Studies on the ribosomal RNA operons of Listeria monocytogenes. FEMS Microbiol. Lett 75:219–224
    [Google Scholar]
  25. Wang R. F., Cao W. W., Johnson M. G. 1991; Development of a 16S rRNA-based oligomer probe specific for Listeria monocytogenes. Appl. Environ. Microbiol 57:3666–3670
    [Google Scholar]
  26. Wang R. F., Cao W. W., Wang H., Johnson M. G. 1993; A 16S rRNA-based DNA probe and PCR method specific for Listeria ivanovii. FEMS Microbiol. Lett 80:85–92
    [Google Scholar]
  27. Wiedmann M., Barany F., Batt C. A. 1993; Detection of Listeria monocytogenes with a nonisotopic polymerase chain reaction-coupled ligase chain reaction assay. Appl. Environ. Microbiol 59:2743–2745
    [Google Scholar]
  28. Wiedmann M., Czajka J., Barany F., Batt C. A. 1992; Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction. Appl. Environ. Microbiol 58:3443–3447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-863
Loading
/content/journal/ijsem/10.1099/00207713-47-3-863
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error