1887

Abstract

We propose the name for a new species of gram-negative, rod-shaped, motile bacteria that were nonhemolytic on blood agar and were isolated from clinical sources. The 10 strains of . were incapable of liquefing gelatin. They grew at 10°C but not at 41°C, produced fluorescent pigments, catalase, and cytochrome oxidase, and possessed the arginine dihydrolase system. They were capable of respiratory but not fermentative metabolism. They did not hydrolyze esculin or starch and were able to use benzylamine, α-aminobutyrate, -ribose, -arabinose, butyrate, valerate, isovalerate, isobutyrate, inositol, phenylacetate, -ala-nine, and amylamine. They possessed -phenylalanine arylamidase, -lysine arylamidase, -alanine arylamidase, γ-glutamy-transferase, glycy-phenylalanine arylamidase, -tryptophan arylamidase, glycyl--alanine arylamidase, esterase C, esterase C, esterase C, esterase C, esterase C, and esterase C. DNA relatedness studies revealed that . strains formed a homogeneous DNA hybridization group. A total of 57 strains representing previously described or partially characterized taxa belonging to the genus were 6 to 54% related to . . The highest hybridization values were obtained with strains belonging to or related to biovar A. The average G+C content of the DNA was 60.5 ± 0.5 mol% for four of the . strains studied. The type strain of . is CFML 90-60 (= CIP 104883); it was isolated from bronchial aspirate and has a G+C content of 60 mol%. The clinical significance of these organisms is not known.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-846
1997-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-846.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-846&mimeType=html&fmt=ahah

References

  1. Beji A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli. Anal. Biochem 161:18–23
    [Google Scholar]
  2. Blazevic D. J., Koepcke M. H., Matsen J. M. 1973; Incidence and identification of Pseudomonas fluorescens and Pseudomonas putida in the clinical laboratory. Appl. Microbiol 25:107–110
    [Google Scholar]
  3. Botzenhart K., Ruden H. 1987; Hospital infections caused by Pseudomonas aeruginosa. Antibiot. Chemother 39:1–15
    [Google Scholar]
  4. Bowman J. P., Sly L. I., Hayward A. C., Spiegel Y., Stackebrandt E. 1993; Tellurio mixta (Pseudomonas mixta Bowman, Sly, and Hayward 1988) gen. nov., comb. nov., and Telluria chitinolytica sp. nov., soil-dwelling organisms which actively degrade polysaccharides. Int. J. Syst. Bacteriol 43:120–124
    [Google Scholar]
  5. Champion A. B., Barrett E. L., Palleroni N. J., Soderberg R. L., Kunisawa R., Contopoulou R., Wilson A. C., Doudoroff M. 1980; Evolution in Pseudomonas fluorescens. J. Gen. Microbiol 120:485–511
    [Google Scholar]
  6. Coroler L., Elomari M., Izard D., Leclerc H. 1996; Pseudomonas rhodesiae sp. nov., a new species isolated from natural mineral waters. Syst. Appl. Microbiol 19:600–607
    [Google Scholar]
  7. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol 115:904–911
    [Google Scholar]
  8. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:737–754
    [Google Scholar]
  9. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol 29:344–358
    [Google Scholar]
  10. De Vos D., Lim A., De Vos P., Sarniguet A., Kersters K., Cornelis P. 1993; Detection of the outer membrane lipoprotein I and its gene in fluorescent and non-fluorescent pseudomonads: implications for taxonomy and diagnosis. J. Gen. Microbiol 139:2215–2223
    [Google Scholar]
  11. De Vos D., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid-ribosomal ri-bonucleic acid hybridizations. Int. Syst. Bacteriol 39:35–49
    [Google Scholar]
  12. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol 33:487–509
    [Google Scholar]
  13. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas David and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol 35:443–453
    [Google Scholar]
  14. Elomari M., Izard D., Vincent P., Coroler L., Leclerc H. 1994; Comparison of ribotyping analysis and numerical taxonomy studies of Pseudomonas putida biovar A. Syst. Appl. Microbiol 17:361–369
    [Google Scholar]
  15. Elomari M., Coroler L., Izard D., Leclerc H. 1995; A numerical taxonomic study of fluorescent Pseudomonas strains isolated from natural mineral waters. J. Appl. Bacteriol 78:71–81
    [Google Scholar]
  16. Elomari M., Coroler L., Izard D., Leclerc H. 1996; DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int. J. Syst. Bacteriol 46:1138–1144
    [Google Scholar]
  17. Gardan L., Bollet C., Abu Ghorrah M., Grimont F., Grimont P. A. D. 1992; DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse 1982 and proposal of Pseudomonas savastanoi sp. nov. Int. J. Syst. Bacteriol 42:606–612
    [Google Scholar]
  18. Gilardi G. L. 1972; Infrequently encountered Pseudomonas species causing infections in humans. Ann. Intern. Med 72:211–215
    [Google Scholar]
  19. Gilardi G. L. 1973; Nonfermentative Gram-negative bacteria encountered in clinical specimens. Antonie van Leeuwenhoek J. Microbiol. Serol 39:229–242
    [Google Scholar]
  20. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol 4:325–330
    [Google Scholar]
  21. Hayase N., Taira K., Furukawa K. 1990; Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacterial. J. Bacteriol 172:1160–1164
    [Google Scholar]
  22. Hugh R., Gilardi G. L. 1980 Pseudomonas288–317 Lennette E. H., Balows A., Hausler W. J., Truant J. P. Manual of clinical microbiology, 3rd. American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  23. Jessen O. 1965; Pseudomonas aeruginosa and other green fluorescent pseudomonads. A taxonomic study Munksgaard; Copenhagen, Denmark:
    [Google Scholar]
  24. Kasak L., Hôrak R., Nurk A., Talvik K., Kivisaar M. 1993; Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida. J. Bacteriol 175:8038–8042
    [Google Scholar]
  25. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med 44:301–307
    [Google Scholar]
  26. Leddy M. B., Phipps D. W., Ridgway H. F. 1995; Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida. J. Bacteriol 177:4713–4720
    [Google Scholar]
  27. Love N. G., Leslie Grady C. P. 1995; Impact of growth in benzoate and m-toluate liquid media on culturability of Pseudomonas putida on benzoate and m-toluate plates. Appl. Environ. Microbiol 61:3142–3144
    [Google Scholar]
  28. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  29. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  30. Molin G., Ternström A. 1982; Numerical taxonomy of the psychrotrophic pseudomonads. J. Gen. Microbiol 128:1249–1264
    [Google Scholar]
  31. O’Connor K., Buckley C. M., Hartmans S., Dobson A. D. W. 1995; Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl. Environ. Microbiol 61:544–548
    [Google Scholar]
  32. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894, 237AL (n. m. cons. opin. 5, jud. comm. 1952, 237). 141–199 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams and Wilkins Co; Baltimore, Md:
    [Google Scholar]
  33. Palleroni N. J. 1992; Human- and animal-pathogenic pseudomonads. 3086–3103 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications 3 Springer-Verlag; New York, N.Y:
    [Google Scholar]
  34. Palleroni N. J. 1992; Introduction to the family Pseudomonadaceae. 3071–3085 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications 3 Springer-Verlag; New York, N.Y:
    [Google Scholar]
  35. Palleroni N. J. 1992; Present situation of the taxonomy of pseudomonads. 105–115 Galli E., Silver S., Witholt B. Pseudomonas: molecular biology and biotechnology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  36. Palleroni N. J., Bradbury J. F. 1993; Stenotrophomonas a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol 43:606–609
    [Google Scholar]
  37. Palleroni N. J., Doudoroff M., Stanier R. Y., Solanes R. E., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J. Gen. Microbiol 60:215–231
    [Google Scholar]
  38. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol 23:333–339
    [Google Scholar]
  39. Palleroni N. J., Ballard R. W., Ralston R., Doudoroff M. 1972; De-oxyribonucleic acid homologies among some Pseudomonas species. J. Bacteriol 110:1–11
    [Google Scholar]
  40. Parales R. E., Harwood C. S. 1993; Regulation of the pcaIJ genes for aromatic acid degradation in Pseudomonas putida. J. Bacteriol 175:5829–5838
    [Google Scholar]
  41. Pedersen M. M., Marso E., Pickett M. J. 1970; Non-fermentative bacilli associated with man. III. Pathogenicity and antibiotic susceptibility. Am. J. Clin. Pathol 54:178–192
    [Google Scholar]
  42. Ralston-Barrett E., Palleroni N. J., Doudoroff M. 1976; Phenotypic characterization and deoxyribonucleic acid homologies of the “Pseudomonas alcaligenes” group. Int. J. Syst. Bacteriol 26:421–426
    [Google Scholar]
  43. Rogers K. B. 1960; Pseudomonas infections in a children’s hospital. J. Appl. Bacteriol 23:533–537
    [Google Scholar]
  44. Saint-Onge A., Romeyer F., Lebel P., Masson L., Brousseau R. 1992; Specificity of the Pseudomonas PAO1 lipoprotein I gene as a DNA probe and PCR target region within the Pseudomonadaceae. J. Gen. Microbiol 138:733–741
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  46. Schwartz A., Bar R. 1995; Cyclodextrin-enhanced degradation of toluene and p-tolouic acid by Pseudomonas putida. Appl. Environ. Microbiol 61:2727–2731
    [Google Scholar]
  47. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol 44:499–510
    [Google Scholar]
  48. Shen H., Wang Y. 1995; Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl. Environ. Microbiol 61:2754–2758
    [Google Scholar]
  49. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  50. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. 151–194 Goodfellow M., O’Donnell A. G. Handbook of new bacterial systematics Academic Press, Ltd; London, United Kingdom:
    [Google Scholar]
  51. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol 43:159–271
    [Google Scholar]
  52. Sutter V. 1968; Identification of Pseudomonas species isolated from hospital environment and human species. Appl. Microbiol 16:1532–1538
    [Google Scholar]
  53. Swings J., De Vos P., Van Den Mooter M., De Ley J. 1983; Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb. nov. Int. J. Syst. Bacteriol 33:409–413
    [Google Scholar]
  54. Tamaoka J., Ha D. M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol 37:52–59
    [Google Scholar]
  55. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev 60:407–438
    [Google Scholar]
  56. Van Niel C. B., Allen M. B. 1952; A note on Pseudomonas stutzeri. J. Bacteriol 64:413–422
    [Google Scholar]
  57. Von Graevenitz A. 1985; Ecology, clinical significance and antimicrobial susceptibility of infrequently encountered glucose nonfermenting Gram negative rods. 181–232 Gilardi G. L. Nonfermentative Gram negative rods Marcel Dekker; New York, N.Y:
    [Google Scholar]
  58. Von Graevenitz A., Weinstein J. 1971; Pathogenic significance of Pseudomonas fluorescens and Pseudomonas putida. Yale J. Biol. Med 43:265–272
    [Google Scholar]
  59. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax a new genus for Pseudomonas facilis, Pseudomonas delafieldii EF group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol 40:384–398
    [Google Scholar]
  60. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol 39:319–333
    [Google Scholar]
  61. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  62. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol 34:99–119
    [Google Scholar]
  63. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Nishiuchi Y. 1995; Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb nov. Microbiol. Immunol 39:897–904
    [Google Scholar]
  64. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol 36:1251–1275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-846
Loading
/content/journal/ijsem/10.1099/00207713-47-3-846
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error