1887

Abstract

A numerically important member of marine enrichment cultures prepared with lignin-rich, pulp mill effluent was isolated. This bacterium was gram negative and rod shaped, did not form spores, and was strictly aerobic. The surfaces of its cells were covered by blebs or vesicles and polysaccharide fibrils. Each cell also had a holdfast structure at one pole. The cells formed rosettes and aggregates. During growth in the presence of lignocellulose or cellulose particles, cells attached to the surfaces of the particles. The bacterium utilized a variety of monosaccharides, disaccharides, amino acids, and volatile fatty acids for growth. It hydrolyzed cellulose, and synthetic lignin preparations were partially solubilized and mineralized. As determined by 16S rRNA analysis, the isolate was a member of the α subclass of the phylum and was related to the genus . A signature secondary structure of the 16S rRNA is proposed. The guanine-plus-cytosine content of the genomic DNA was 65.0 mol%. On the basis of the results of 16S rRNA sequence and phenotypic characterizations, the isolate was sufficiently different to consider it a member of a new genus. Thus, a novel genus and species, , are proposed; the type strain is E-37 (= ATCC 700073).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-773
1997-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-773.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-773&mimeType=html&fmt=ahah

References

  1. Antranikian G., Herzberg C., Mayer F., Gottschalk G. 1987; Changes in the cell envelope structure of Clostridium sp. strain EMI during massive production of α-amylase and pullulanase. FEMS Microbiol. Lett. 41:193–197
    [Google Scholar]
  2. Baumann P., Baumann L. 1981 The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Al-caligenes. 1302–1331 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes Springer-Verlag; Berlin, Germany.:
    [Google Scholar]
  3. Benner R., Maccubbin A. E., Hodson R. E. 1984; Preparation, characterization, and microbial degradation of specifically radiolabeled [14C]lignocellulose from marine and freshwater macrophytes. Appl. Environ. Microbiol. 47:381–389
    [Google Scholar]
  4. Benner R., Hodson R. E. 1985; Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Mar. Ecol. Prog. Ser. 23:221–230
    [Google Scholar]
  5. Benner R., Moran M. A., Hodson R. E. 1986; Biogeochemical cycling of lignoceilulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes. Limnol. Oceanogr. 31:89–100
    [Google Scholar]
  6. Biddanda B. A. 1985; Microbial synthesis of macroparticulate matter. Mar. Ecol. Prog. Ser. 20:241–251
    [Google Scholar]
  7. Biddanda B. A. 1986; Structure and function of marine microbial aggregates. Oceanol. Acta 9:209–211
    [Google Scholar]
  8. Britigan B. E., Cohen M. S., Sparling P. F. 1985; Gonococcal infection: a model of molecular pathogenesis. N. Engl. J. Med. 312:1683–1694
    [Google Scholar]
  9. Britschgi T. B., Fallon R. D. 1994; PCR-amplification of mixed 16S rRNA genes from an anaerobic, cyanide-degrading consortium. FEMS Microbiol. Ecol. 13:225–232
    [Google Scholar]
  10. Crawford D. L., Pometto A. L. III, Crawford R. L. 1983; Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol. 45:898–904
    [Google Scholar]
  11. Crawford D. L., Pettey T. M., Thede B. M., Deobald L. A. 1984; Genetic manipulation of lignolytic Streptomyces and generation of improved lignin-to-chemical bioconversion strains. Biotechnol. Bioeng. Symp. Ser. 14:241–256
    [Google Scholar]
  12. Dams E., Hendriks L., Van de Peer Y., Neefs J.-M., Smits G., Vandenbempt I., De Wachter R. 1988; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16:r87–rl73
    [Google Scholar]
  13. Daniel G. F., Nilsson T., Singh A. P. 1987; Degradation of lignocellulosics by unique tunnel-forming bacteria. Can. J. Microbiol. 33:943–948
    [Google Scholar]
  14. Felsenstein J. 1989; PHYLIP–phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  15. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284
    [Google Scholar]
  16. Forsberg C. W., Beveridge T. J., Hellstrom A. 1981; Cellulase and xylanasc release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ. Microbiol. 42:886–896
    [Google Scholar]
  17. Freudenberg K., Neish A. C. 1968 Constitution and biosynthesis of lignin Springer-Verlag; Berlin, Germany.:
    [Google Scholar]
  18. Fulthorpe R. R., Liss S. N., Allen D. G. 1993; Characterization of bacteria isolated from a bleached kraft pulp mill wastewater treatment plant. Can. J. Microbiol. 39:13–24
    [Google Scholar]
  19. Garcia M. M., Becker S. A. W. E., Brooks B. W., Berg J. N., Finegold S. M. 1992; Ultrastructure and molecular characterization of Fusobacterium necrophorum biovars. Can. J. Vet. Res. 56:318–325
    [Google Scholar]
  20. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 42:568–576
    [Google Scholar]
  21. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int. J. Syst. Bacteriol. 47:369–376
    [Google Scholar]
  22. González J. M., Whitman W. B., Hodson R. E., Moran M. A. 1996; Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol. 62:4433–4440
    [Google Scholar]
  23. Gosink J. J., Staley J. T. 1995; Biodiversity of gas-vacuolate bacteria from Antarctic sea ice and water. Appl. Environ. Microbiol. 61:3486–3489
    [Google Scholar]
  24. Hodson R. E., Christian R. R., Maccubbin A. E. 1984; Lignocellulose and lignin in the salt marsh grass, Spartina altemiflora: initial concentrations and short-term post-depositional changes in detrital material. Mar. Biol. 81:1–7
    [Google Scholar]
  25. Jaeger J. A., Turner D. H., Zuker M. 1989; Improved predictions of secondary structures for RNA. Proc. Natl. Acad. Sci. USA 86:7706–7710
    [Google Scholar]
  26. Jaeger J. A., Turner D. H., Zuker M. 1989; Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol. 183:281–306
    [Google Scholar]
  27. Kaushik N. K., Hynes H. B. 1971; The fate of the dead leaves that fall into streams. Arch. Hydrobiol. 68:465–515
    [Google Scholar]
  28. Kelly D. P., Wood A. P. 1994; Enzymes involved in microbiological oxidation of thiosulfate and polythionates. Methods Enzymol. 243:501–510
    [Google Scholar]
  29. Laddaga R., McLeod R. A. 1982; Factors affecting the lytic susceptibility of marine and terrestrial bacteria. Can. J. Microbiol. 28:414–424
    [Google Scholar]
  30. Lafay B., Ruimy R., Rausch de Traubenberg C., Breittmayer V., Gauthier M. J., Christen R. 1995; Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int. J. Syst. Bacteriol. 45:290–296
    [Google Scholar]
  31. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  32. Ledyard K. M., DeLong E. F., Dacey J. W. H. 1993; Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch. Microbiol. 160:312–318
    [Google Scholar]
  33. Maccubbin A. E., Benner R., Hodson R. E. 1983; Interactions between pulp mill effluents and microbial populations in coastal waters and sediments. Biodeterioration 5:246–256
    [Google Scholar]
  34. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. 1992; Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15:593–600
    [Google Scholar]
  35. Mason C. F. 1976; Relative importance of fungi and bacteria in the decomposition of Phragmites leaves. Hydrobiologia 51:65–69
    [Google Scholar]
  36. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  37. Moran M. A., Rutherford L. T., Hodson R. E. 1995; Evidence for indigenous Streptomyces population in a marine environment determined with a 16S rRNA probe. Appl. Environ. Microbiol. 61:3695–3700
    [Google Scholar]
  38. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994 Determinative and cytological light microscopy. 21–41 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.ed Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  39. Perestelo F., Falcon M. A., de la Fuente G. 1990; Biotransformation of kraft lignin fractions by Serratia marcescens. Lett. Appl. Microbiol. 10:61–64
    [Google Scholar]
  40. Rayman M. K., McLeod R. A. 1975; Interaction of Mg2+ with peptidoglycan and its relation to the prevention of lysis of a marine pseudomonad. J. Bacteriol. 122:650–659
    [Google Scholar]
  41. Rogers G. M., Baecker A. A. W. 1987; Theories on the degradation in wood associated with glycocalix-producing bacteria. J. Inst. Wood Sci. 11:78–84
    [Google Scholar]
  42. Ruger H.-J., Hbfle M. G. 1992; Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int. J. Syst. Bacteriol. 42:133–143
    [Google Scholar]
  43. Shiba T. 1989 Taxonomy and ecology of marine bacteria. 9–24 Harashima K., Shiba T., Murata N.ed Aerobic photosynthetic bacteria Japan Scientific Societies Press; Tokyo, Japan.:
    [Google Scholar]
  44. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst. Appl. Microbiol. 14:140–145
    [Google Scholar]
  45. Shiba T. 1992 The genus Roseobacter. 2156–2159 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes, 2nd. Springer-Verlag; Berlin, Germany.:
    [Google Scholar]
  46. Singh A. P., Nilsson T., Daniel G. F. 1990; Bacterial attack of Pinus sylvestris wood under near anaerobic conditions. J. Inst. Wood Sci. 11:237–249
    [Google Scholar]
  47. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov., sp. nov.: a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology (Engl. Transl. Mikrobiologiya) 64:354–365
    [Google Scholar]
  48. Sorokin D. Y., Lysenko A. M. 1993; Heterotrophic bacteria from the Black Sea oxidizing reduced sulfur compounds to sulfate. Microbiology (Engl. Transl. Mikrobiologiya) 62:1018–1031
    [Google Scholar]
  49. Specka U., Spreinat S., Antranikian G., Mayer F. 1991; Immunocytochemical identification and localization of active and inactive α-amylase and pullulanase in cells of Clostridium thermosulfurogenes EMI. Appl. Environ. Microbiol. 57:1062–1069
    [Google Scholar]
  50. Stahl D. A., Amann R. I. 1991 Development and application of nucleic acid probes in bacterial systematics. 205–248 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley & Sons, Ltd.; Chichester, England.:
    [Google Scholar]
  51. Thompson A. S., Owens N. J. P., Murrell J. C. 1995; Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appi. Environ. Microbiol. 61:2388–2393
    [Google Scholar]
  52. Trojanowski J. Personal communication
  53. Ulmer D. C., Leisola M. S. A., Schmidt B. H., Fiechter A. 1983; Rapid degradation of isolated lignins by Phanerochaete chrysosporium. Appi. Environ. Microbiol. 45:1795–1801
    [Google Scholar]
  54. Vicuña R. 1988; Bacterial degradation of lignin. Enzyme Microb. Technol. 10:646–655
    [Google Scholar]
  55. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  56. Zuker M. 1989; On finding all suboptimal foldings of an RNA molecule. Science 244:48–52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-773
Loading
/content/journal/ijsem/10.1099/00207713-47-3-773
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error