1887

Abstract

In order to investigate whether 16S–23S ribosomal DNA (rDNA) spacer region length polymorphisms are suitable identification of strains at the species level, the 16S–23S rDNA intergenic spacer region strains belonging to 11 species were studied by a PCR-based method. The lengths 16S–23S rDNA spacer regions varied from 394 to 585 bp, fragment lengths which are similar to those described for other genera. A single PCR profile was obtained for each of the following species: , and . In contrast, two and three PCR patterns were detected for , and , suggesting that genomic heterogeneity occurs in these four species. The 16S–23S rDNA spacer region length polymorphisms allowed us to discriminate among , and , three species that are frequently isolated and misidentified in clinical laboratories. Type strain ATCC 373, which exhibited a PCR pattern similar to that of strains classified in PCR group I, could nevertheless be discriminated from PCR group II () strains, as Well as and strains. Type strain ATCC 373 and strains classified PCR group I could not be distinguished from strains belonging to , and . The lipophilic species and , which are frequently encountered in clinical specimens, could be clearly distinguished from each other by this method. The use of 16S–23S spacer region length data determined by PCR-mediated amplification is suitable for identification of several species. This rapid and easy method may be a useful identification tool for clinical microbiologists.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-767
1997-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-767.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-767&mimeType=html&fmt=ahah

References

  1. Bacot C. M., Reeves R. H. 1991; Novel tRNA gene organization in the 16S-23S intergenic spacer of the Streptococcus pneumoniae rRNA gene cluster. J. Bacteriol. 173:4234–4236
    [Google Scholar]
  2. Barreau C., Bimet F., Kiredjian M., Rouillon N., Bizet C. 1993; Comparative chemotaxonomic studies of mycolic acid-free coryneform bacteria of human origin. J. Clin. Microbiol. 31:2085–2090
    [Google Scholar]
  3. Barry T., Colleran G., Glennon M., Dinican L. K., Gannon F. 1991; The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1:51–62
    [Google Scholar]
  4. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148:107–127
    [Google Scholar]
  5. Cartwright C. P., Stock F., Beekmann S. E., Williams E. C., Gill V. J. 1995; PCR amplification of rRNA intergenic spacer regions as a method for epidemiologic typing of Clostridium difficile. J. Clin. Microbiol. 33:184–187
    [Google Scholar]
  6. Centers for Disease Control 1995; Diphtheria epidemic–new independent states of the former Soviet Union, 1990-1994. Morbid. Mortal. Weekly Rep. 44:177–181
    [Google Scholar]
  7. Clarridge J. E., Spiegel C. A. 1995 Corynebacterium and miscellaneous irregular gram-positive rods, Erysipelothrix, and Gardnerella. 357–378 Murray P. R., Baron E. J., Pfaller M. A., Tenover F. G., Yolken R. H.ed Manual of clinical microbiology, 6th. American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  8. Collins M. D., Cummins C. S. 1986 Genus Corynebacterium, Lehmann and Neumann 1896, 350. 1266–1276 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  9. Coyle M. B., Groman N. B., Russell J. Q., Harnisch J. P., Rabin M., Holmes K. K. 1989; The molecular epidemiology of three biotypes of Corynebacterium diphtheriae in the Seattle outbreak, 1972-1982. J. Infect. Dis. 159:670–679
    [Google Scholar]
  10. Coyle M. B., Lipsky B. A. 1990; Coryneform bacteria in infectious diseases: clinical and laboratory aspects. Clin. Microbiol. Rev. 3:227–246
    [Google Scholar]
  11. De Briel D., Couderc F., Riegel P., Jehl F., Minck R. 1992; Highperformance liquid chromatography of corynomycolic acids as a tool in identification of Corynebacterium species and related organisms. J. Clin. Microbiol. 30:1407–1417
    [Google Scholar]
  12. De Zoysa A., Efstratiou A., George R. C., Jahkola M., Vuopio-Varkila J., Deshevoi S., Tseneva G., Rikushin Y. 1995; Molecular epidemiology of Corynebacterium diphtheriae from northwestern Russia and surrounding countries studied by using ribotyping and pulsed-field gel electrophoresis. J. Clin. Microbiol. 33:1080–1083
    [Google Scholar]
  13. Estrangin E., Thiers B., Peloux Y. 1987; Apport des micromethodes et de [‘analyse en chromatographic en phase gazeuse des acides carboxyliques issus de la fermentation du glucose dans 1′identification des corynebacteries. Ann. Biol. Clin. 45:285–289
    [Google Scholar]
  14. Freney J., Duperron M. T., Courtier C., Hansen W., Allard F., Boeufgras J. M., Monget D., Fleurette J. 1991; Evaluation of API Coryne in comparison with conventional methods for identifying coryneform bacteria. J. Clin. Microbiol. 29:38–41
    [Google Scholar]
  15. Funke G., Lawson P. A., Bernard K. A., Collins M. D. 1996; Most Corynebacterium xerosis strains identified in the routine clinical laboratory correspond to Corynebacterium amycolatum. J. Clin. Microbiol. 34:1124–1128
    [Google Scholar]
  16. Funke G., von Graevenitz A., Clarridge J. E., Bernard K. A. 1997; Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 10:125–159
    [Google Scholar]
  17. Garnier T., Canard B., Cole S. T. 1991; Cloning, mapping, and molecular characterization of the rRNA operons of Clostridium perfringens. J. Bacteriol. 173:5431–5438
    [Google Scholar]
  18. Gavin S. E., Leonard R. B., Briselden A. M., Coyle M. B. 1992; Evaluation of the rapid CORYNE identification system for Corynebacterium species and other coryneforms. J. Clin. Microbiol. 30:1692–1695
    [Google Scholar]
  19. Gruner E., Zuber P. L. F., Martinetti Lucchini G., von Graevenitz A., Altwegg M. 1992; A cluster of non-toxigenic Corynebacterium diphtheriae infections among Swiss intravenous drug abusers. Med. Microbiol. Lett. 1:160–167
    [Google Scholar]
  20. Giirtler V., Stanisich V. A. 1996; New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16
    [Google Scholar]
  21. Hamour A. A., Efstratiou A., Neill R., Dunbar E. M. 1995; Epidemiology and molecular characterisation of toxigenic Corynebacterium diphtheriae var. mitis from a case of cutaneous diphtheria in Manchester. J. Infect. 31:153–157
    [Google Scholar]
  22. Harasawa R., Mizusawa H., Nozawa K., Nakagawa T., Asada K., Kato I. 1993; Detection and tentative identification of dominant mycoplasma species in cell cultures by restriction analysis of the 16S-23S rRNA intergenic spacer regions. Res. Microbiol. 144:489–493
    [Google Scholar]
  23. Hindmarch J. M., Magee J. T., Hadfield M. A., Duerden B. I. 1990; A pyrolysis-mass spectrometry of Corynebacterium spp. J. Med. Microbiol. 31:137–149
    [Google Scholar]
  24. Hookey J. V., Birtles R. J., Saunders N. A. 1995; Intergenic 16S rRNA gene (rDNA)-23S rDNA sequence length polymorphisms in members of the family Legionellaceae. J. Clin. Microbiol. 33:2377–2381
    [Google Scholar]
  25. Jackman P. J. H., Pitcher D. G., Pelczynska S., Borman P. 1987; Classification of corynebacteria associated with endocarditis (group JK) as Corynebacterium jeikeium sp. nov. Syst. Appl. Microbiol. 9:83–90
    [Google Scholar]
  26. Jensen M. A., Webster J. A., Straus N. 1993; Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59:945–952
    [Google Scholar]
  27. Jenum P. A., Skogen V., Danilova E., Eskild A., Sjursen H. 1995; Immunity to diphtheria in northern Norway and northwestern Russia. Eur. J. Clin. Microbiol. Infect. Dis. 14:794–798
    [Google Scholar]
  28. Jones D., Collins M. D. 1987 Irregular, nonsporing gram-positive rods. 1267–1434 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  29. Kostman J. R., Edlind T. D., LiPuma J. J., Stull T. L. 1992; Molecular epidemiology of Pseudomonas cepacia determined by PCR ribotyping. J. Clin. Microbiol. 30:2084–2087
    [Google Scholar]
  30. Lortholary O., Buu-Hoi A., Gutmann L., Acar J. 1993; Corynebacterium diphtheriae endocarditis in France. Clin. Infect. Dis. 17:1072–1074
    [Google Scholar]
  31. Loughney K., Lund E., Dahlberg J. E. 1982; tRNA genes are found between the 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res. 10:1607–1624
    [Google Scholar]
  32. Lystad A. 1992; Diphtheria in Finnmark. Communicable Dis. Rep. (Norway) 20:53 In Norwegian
    [Google Scholar]
  33. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning: a laboratory manual Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  34. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatography analysis of whole organism methanolysates. J. Gen. Microbiol. 88:200–204
    [Google Scholar]
  35. Pappenheimer A. M. Jr., Murphy J. R. 1983; Studies on the molecular epidemiology of diphtheria. Lancet ii:923–926
    [Google Scholar]
  36. Pitcher D., Johnson A., Allerberger F., Woodford N., George R. 1990; An investigation of nosocomial infection with Corynebacterium jeikeium in surgical patients using a ribosomal RNA gene probe. Eur. J. Clin. Microbiol. Infect. Dis. 9:643–648
    [Google Scholar]
  37. Poilane I., Fawaz F., Nathanson M., Cruaud P., Martin T., Collignon A., Gaudelus J. 1995; Corynebacterium diphtheriae osteomyelitis in an immunocompetent child: a case report. Eur. J. Pediatr. 154:381–383
    [Google Scholar]
  38. Rappuoli R., Perugini M., Falsen E. 1988; Molecular epidemiology of the 1984-1986 outbreak of diphtheria in Sweden. N. Engl. J. Med. 318:12–14
    [Google Scholar]
  39. Riegel P., De Briel D., Prévost G., Jehl F., Monteil H. 1994; Genomic diversity among Corynebacterium jeikeium strains and comparison with biochemical characteristics and antimicrobial susceptibilities. J. Clin. Microbiol. 32:1860–1865
    [Google Scholar]
  40. Riegel P., Grimont P. A. D., De Briel D., Ageron E., Jehl F., Pelegrin M., Monteil H., Minck R. 1992; Corynebacterium group D2 (“Corynebacterium urealyticum”) constitutes a new genomic species. Res. Microbiol. 143:307–313
    [Google Scholar]
  41. Riegel P., Ruimy R., De Briel D., Prévost G., Jehl F., Christen R., Monteil H. 1995; Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol. Lett. 126:271–276
    [Google Scholar]
  42. Soto A., Pitcher D. G., Soriano F. 1991; A numerical analysis of ribosomal RNA gene patterns for typing clinical isolates of Corynebacterium group D2. Epidemiol. Infect. 107:263–272
    [Google Scholar]
  43. Tiley S. M., Kociuba K. R., Heron L. G., Muro R. 1993; Infective endocarditis due to nontoxigenic Corynebacterium diphtheriae·. a report of seven cases and review. Clin. Infect. Dis. 16:271–275
    [Google Scholar]
  44. Van Bosterhaut B., Cuvelier R., Serruys E., Pouthier F., Wauters G. 1992; Three cases of opportunistic infection caused by propionic acid producing Corynebacterium minutissimum. Eur. J. Microbiol. Infect. Dis. 11:628–631
    [Google Scholar]
  45. Vaneechoutte M., Riegel P., De Briel D., Verschraegen G., Rouck A. D., Claeys G. 1995; Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium. Res. Microbiol. 146:633–641
    [Google Scholar]
  46. Vilgalys R., Hester M. 1990; Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172:4238–4246
    [Google Scholar]
  47. von Graevenitz A., Printer V., Gruner E., Pfyffer G. E., Funke G. 1994; Identification of coryneform and other gram-positive rods with several methods. APMIS 102:381–389
    [Google Scholar]
  48. Von Hunolstein C., Efstratiou A., Valle R. L., Gentili G., Pestalozza S., Mascellino M. T., Rappuoli R., Orefici G., Cassone A. 1995; An imported fatal case of diphtheria in Italy. Eur. J. Microbiol. Infect. Dis. 14:828–829
    [Google Scholar]
  49. Wauters G., Driessen A., Ageron E., Janssens M., Grimont P. A. D. 1996; Propionic acid-producing strains previously designated as Corynebacterium xerosis, C. minutissimum, C. striatum, and CDC group I2 and group F2 coryneforms belong to the species Corynebacterium amycolatum. Int. J. Syst. Bacteriol. 46:653–657
    [Google Scholar]
  50. Zinkernagel A. S., von Graevenitz A., Funke G. 1996; Heterogeneity within Corynebacterium minutissimum strains is explained by misidentified Corynebacterium amycolatum strains. Am. J. Clin. Pathol. 106:378–383
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-767
Loading
/content/journal/ijsem/10.1099/00207713-47-3-767
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error