1887

Abstract

A primary-structure analysis of the 16S rRNA gene was performed with 10 strains representing five described and one unidentified species of the genus . The phylogenies determined illustrate the evolutionary affiliations among strains, other cyanobacteria, and related plastids and bacteria. A cluster of 10 strains that included hepatotoxic isolates identified as formed a monophyletic group. However, the genus appeared to be polyphyletic and contained two strains that clustered with unicellular cyanobacteria belonging to the genus . The clustering of related strains, including strains involved in the production of the cyclic peptide toxin microcystin, was consistent with cell morphology, gas vacuolation, and the low G+C contents of the genomes. The lineage was also distinct from the lineage containing the unicellular genus and the filamentous, heterocyst-forming genus . The secondary structure of a 16S rRNA molecule was determined, and genus-specific sequence signatures were used to design primers that permitted identification of the potentially toxic cyanobacteria belonging to the genus via DNA amplification.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-693
1997-07-01
2024-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-693.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-693&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J. Mol. Biol. 215:403–410
    [Google Scholar]
  2. An J., Carmichael W. W. 1994; Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon 32:1495–1507
    [Google Scholar]
  3. Arment A R., Carmichael W. W. 1995; Evidence that microcystin is a thio-template product. J. Phycol. 32:591–597
    [Google Scholar]
  4. Brosius J., Dull T. J., Sleeter D., Noller H. F. 1981; Gene organisation and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148:107–127
    [Google Scholar]
  5. Carmichael W. W. 1992; Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol. 72:445–459
    [Google Scholar]
  6. Castenholz R. W., Waterbury J. B. 1989 Section 19. Oxygenic photosynthetic bacteria, group 1, cyanobacteria. 1710–1728 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 Williams and Wilkins Co.; Baltimore, Md:
    [Google Scholar]
  7. Chandrasena N. Personal communication
  8. Doers M. P., Parker D. L. 1988; Properties of Microcystis aeruginosa and M. flos-aquae (Cyanophyta) in culture: taxonomic implications. J. Phycol. 24:502–508
    [Google Scholar]
  9. Douglas S. E., Turner S. 1991; Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J. Mol. Evol. 33:267–273
    [Google Scholar]
  10. Eloff J. N. 1981 Autecological studies on Microcystis. 71–96 Carmichael W. W.ed The water environment—algal toxins and health Plenum Press; New York, N.Y.:
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:166–170
    [Google Scholar]
  12. Felsenstein J. 1989; PHYLIP. Phylogeny inference package. Cladistics 5:164–166
    [Google Scholar]
  13. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 39:166–170
    [Google Scholar]
  14. Genetics Computer Group 1994 Wisconsin package, version 8, program manual Genetics Computer Group; Madison, Wis.:
    [Google Scholar]
  15. Giovanonni S. J., Turner S., Olsen G. J., Bams S., Lane D. J., Pace N. R. 1988; Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170:3584–3592
    [Google Scholar]
  16. Graf L., Roux E., Stutz E., Kessel H. 1982; Nucleotide sequences of a Euglena gracilis chloroplast gene coding for the 16S rRNA: homologies to E. coli and Zea mays chloroplast 16S rRNA. Nucleic Acids Res. 10:6369–6381
    [Google Scholar]
  17. Honkanen R. E., Caplan F. R., Baker K. K., Baldwin C. L., Bobzin S. C., Bolis C. M., Cabrera G. M., Johnson L. A., Hung J. H., Larsen L. K., Levine I. A., Moore R. E., Nelson C. S., Patterson G. M. L., Tschappat K. D., Tuang G. D., Boynton A. L., Arment A. R., An J., Carmichael W. W., Rodland K. D., Magun B. E., Lewin R. A. 1995; Protein phosphatase inhibitory activity in extracts of cultured blue-green algae (Cyanophyta). J. Phycol. 31:478–486
    [Google Scholar]
  18. Jacobs D., Neilan B. A. 1995; Long term preservation of DNA in agarose gels using 70% ethanol. BioTechniques 19:892–894
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism 3 Academic Press, Inc.; New York, N.Y:
    [Google Scholar]
  20. Kaneko T., Tanaka A., Sato S., Kotani H., Sazuka T., Miyajima N., Sugiura M., Tabata S. 1995; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. PCC6803.1. Sequence features in the 1 Mb region from map position 64% to 92% of the genome. DNA Res. 2:153–166
    [Google Scholar]
  21. Komarek J. 1991; A review of water-bloom forming Microcystis species, with regard to populations from Japan. Arch. Hydrobiol. Suppl. 64:115–127
    [Google Scholar]
  22. Komarek J., Anagnostidis K. 1986; Modern approach to the classification system of cyanophytes. 2. Chroococcales. Arch. Hydrobiol. Suppl. 43:157–226
    [Google Scholar]
  23. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  24. Ligon P. J., Meyer K. G., Martin J. A., Curtis S. E. 1991; Nucleotide sequence of a 16S rRNA from Anabaena sp. strain PCC 7120. Nucleic Acids Res. 19:45–53
    [Google Scholar]
  25. National Institute for Environmental Studies 1991 Microbial Culture Collection list of strains, 3rd. Environmental Agency; Tsukuba, Japan.:
    [Google Scholar]
  26. Neilan B. A. 1995; Identification and phylogenetic analysis of toxigenic cyanobacteria using a multiplex RAPD PCR. Appl. Environ. Microbiol. 61:2286–2291
    [Google Scholar]
  27. Neilan B. A., Cox P. T., Hawkins P. R., Goodman A. E. 1994; 16S ribosomal RNA gene sequence and phylogeny of toxic Microcystis spp. (cyanobacteria). DNA Sequence 4:333–337
    [Google Scholar]
  28. Neilan B. A., Goodman A. E., Cox P. T., Hawkins P. R. 1997 Unpublished data
  29. Neilan B. A., Jacobs D., Goodman A. E. 1995; Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61:3875–3883
    [Google Scholar]
  30. Rippka R. 1988; Recognition and identification of cyanobacteria. Methods Enzymol. 167:28–67
    [Google Scholar]
  31. Rippka R., Herdman M. 1992 Pasteur Culture Collection (PCC) of Cyanobacterial Strains in Axenic Culture, vol. 1. Catalogue of strains. Institut Pasteur; Paris, France.:
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  33. Schleifer K. H., Ludwig W. 1989 Phylogenetic relationships among bacteria. 103–117 Fernholm B., Bremmer K., Joernvall. ed The hierarchy of life Elsevier Science Publishers; Amsterdam, The Netherlands.:
    [Google Scholar]
  34. Schopf I. W., Packer B. M. 1987; Early archaen (3.3 billion- to 3.5 billionyears old) microfossils from the Warranoona Group, Australia. Science 237:70–73
    [Google Scholar]
  35. Sivonen K. 1990; Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl. Environ. Microbiol. 56:2658–2666
    [Google Scholar]
  36. Stewart G. C., Bott K. 1983; DNA sequence of the tandem ribosomal RNA promoter for Bacillus subtilis strain 168. Nucleic Acids Res. 11:6289–6300
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680
    [Google Scholar]
  38. Tomioka N., Sugiura M. 1983; The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Mol. Gen. Genet. 191:46–50
    [Google Scholar]
  39. Urbach E., Robertson D. L., Chisholm S. W. 1992; Multiple evolutionary origins of prochiorophytes within the cyanobacterial radiation. Nature 335:267–269
    [Google Scholar]
  40. Waterbury J. B., Rippka R. 1989 Order Chroococcales (subsection I). 1728–1746 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 Williams and Wilkins Co.; Baltimore, Md:
    [Google Scholar]
  41. Weisburg W. G., Bams S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703
    [Google Scholar]
  42. Wilmotte A. 1994 Molecular evolution and taxonomy of the cyanobacteria. 1–25 Bryant D. A.ed The molecular biology of cyanobacteria Kluwer Academic Publishers; Dordrecht, The Netherlands.:
    [Google Scholar]
  43. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-47-3-693
Loading
/content/journal/ijsem/10.1099/00207713-47-3-693
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error