1887

Abstract

Abstract

Six strains of thermophilic, endospore-forming, sulfate-reducing bacteria were enriched and isolated from 2.7 km below the earth’s surface in the Taylorsville Triassic Basin in Virginia. The cells of these strains were motile rods that were 1 to 1.1 µm in diameter and 2 to 5 µm long. The cells grew by oxidizing H, formate, methanol (weakly), lactate (incompletely, to acetate and CO), or pyruvate (incompletely) while reducing sulfate to sulfide; acetate did not serve as a catabolic substrate. Thiosulfate or sulfite could replace sulfate as an electron acceptor. The results of a phylogenetic analysis of the 16S rRNA gene indicated that these strains belong to the genus , but are distinct from previously described species. Thus, we propose a new species, , for them, with strain TH-11 (= SMCC W459) as the type strain. The results of our phylogenetic analysis also indicated that strain SLT, which was isolated from a hot spring and has been described previously (T. M. Karnauchow, S. F. Koval, and K. F. Jarrell, Syst. Appl. Microbiol. 15:296–310, 1992), is also a member of the genus and is distinct from other species in this genus. We therefore propose the new species for this organism; strain SLT (= SMCC W644) is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-615
1997-07-01
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-615.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-615&mimeType=html&fmt=ahah

References

  1. Applied Biosystems, Inc. 1992 Taq DyeDeoxy terminator cycle sequencing kit user bulletin no. 901497, revision E Applied Biosystems, Inc.; Foster City, Calif.:
    [Google Scholar]
  2. Balkwill D. L., Boone D. R., Colwell F. S., Griffin T., Rieft T. L., Lehman R. M., MkKinley J. P., Nierzwickie-Bauer S., Onstott T. C., Tseng H. Y., Gao G., Phelps T. J., Ringelberg D., Russell B., Stevens T. O., White D. C., Wobber F. J. 1994; D.O.E. seeks origin of deep subsurface bacteria. Eos 75:395–396 385
    [Google Scholar]
  3. Boone D. R. 1982; Terminal reactions in the anaerobic digestion of animal waste. Appl. Environ. Microbiol. 43:57–64
    [Google Scholar]
  4. Boone D. R., Johnson R. L., Liu Y. 1989; Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735–1741
    [Google Scholar]
  5. Boone D. R., Liu Y., Stevens T. O. 1994320 Abstracts of the 94th General Meeting of the American Society for Microbiology 1994 abstr. N-25
    [Google Scholar]
  6. Boone D. R., Liu Y., Zhao Z., Balkwill D. L., Drake G. R., Stevens T. O., Aldrich H. C. 1995; Bacillus infemus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45:441–448
    [Google Scholar]
  7. Boone D. R., Whitman W. B., Rouvière P. 1993; Diversity and taxonomy of methanogens. 35–80 Ferry J. G. Methanogenesis: ecology, physiology, biochemistry, and genetics Chapman & Hall; New York, N.Y.:
    [Google Scholar]
  8. Brosius J., Palmer M. L., Kennedy P. J., Noller H. R. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coll. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  9. Campbell L. L., Postgate J. R. 1965; Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29:359–363
    [Google Scholar]
  10. Colwell F. S., Stormberg G. J., Phelps T. J., Birnbaum S. A., McKinley J., Rawson S. A., Veverka C., Goodwin S., Long P. E., Russell B. F., Garland T., Thompson D., Skinner P., Grover S. 1992; Innovative techniques for collection of saturated and unsaturated subsurface basalts and sediments for microbiological characterization. J. Microbiol. Methods 15:279–292
    [Google Scholar]
  11. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek 54:165–178
    [Google Scholar]
  12. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172:3609–3619
    [Google Scholar]
  13. Doetsch R. N. 1981; Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  14. Dowling N. J., Widdel F., White D. C. 1986; Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate reducers and other sulphide-forming bacteria. J. Gen. Microbiol. 132:1815–1825
    [Google Scholar]
  15. Fardeau M. L., Ollivier B. M., Patel B. K. C., Dwivedi P., Ragot M., Garcia J. L. 1995; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int. J. Syst. Bacteriol. 45:218–221
    [Google Scholar]
  16. Felsenstein J. 1993 PHYLIP (phylogeny inference package), version 3.5c University of Washington; Seattle:
    [Google Scholar]
  17. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284
    [Google Scholar]
  18. Gompertz B. 1825; On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. London 115:513–585
    [Google Scholar]
  19. Henry E. A., Devereaux R., Maki J. S., Gilmour C. C., Woese C. R., Mandelco L., Schauder R., Remsen C. C., Mitchell R. 1994; Characterization of a new thermophilic sulfate-reducing bacterium, Thermodesulfovibrio yellowstonii gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch. Microbiol. 161:62–69
    [Google Scholar]
  20. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994 Bergey’s manual of determinative bacteriology, 9th ed.. Williams & Wilkins; Baltimore, Md.:
    [Google Scholar]
  21. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. 117–132 Norris J. R., Ribbons D. W. Methods in microbiology Academic Press; New York, N.Y.:
    [Google Scholar]
  22. Johnson J. L. 1981; Genetic characterization. 450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  24. Karnauchow T. M., Koval S. F., Jarrell K. F. 1992; Isolation and characterization of 3 thermophilic anaerobes from a St. Lucia hot spring. Syst. Appl. Microbiol. 15:296–310
    [Google Scholar]
  25. Klemps R., Cypionka H., Widdel F., Pfennig N. 1985; Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch. Microbiol. 143:203–208
    [Google Scholar]
  26. Kohring G. W., Rogers J. E., Wiegel J. 1989; Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures. Appl. Environ. Microbiol. 55:348–353
    [Google Scholar]
  27. Kohring G. W., Zhang X. M., Wiegel J. 1989; Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Appl. Environ. Microbiol. 55:2735–2737
    [Google Scholar]
  28. Kohring L. L., Ringelberg D. B., Devereux R., Stahl D., Mittleman M. W., White D. C. 1994; Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol. Lett. 119:303–308
    [Google Scholar]
  29. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  30. Larsen N., Olsen J. G., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Barsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res. 21:3021–3023
    [Google Scholar]
  31. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  32. McBride L. J., Koepf S. M., Gibbs R. A., Salser W., Mayrand P. E., Hunkapiller M. W., Kronick M. N. 1989; Automated DNA sequencing methods involving polymerase chain reaction. Clin. Chem. 35:2196–2201
    [Google Scholar]
  33. Min H., Zinder S. H. 1990; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermoacetoxidans sp. nov. Arch. Microbiol. 153:399–404
    [Google Scholar]
  34. Nazina T. N., Ivanova A. E., Kanchaveli L. P., Rozanova E. P. 1988; A new sporeforming, thermophilic, methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii. Mikrobiologiya 57:823–827
    [Google Scholar]
  35. Nichols P. D., Guckert J. B., White D. B. 1986; Determination of monounsaturated fatty acid double bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J. Microbiol. Methods 5:49–55
    [Google Scholar]
  36. Nilsen R. K., Torsvik T., Lien T. 1996; Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Svst. Bacteriol. 46:397–402
    [Google Scholar]
  37. Postgate J. R. 1984; Genus Desulfovibrio Kluyver and van Niel 1936, 397AL. 666–672 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 Williams & Wilkins; Baltimore, Md.:
    [Google Scholar]
  38. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rRNA analysis of Spirochaeta thermophila: position and implications for systematics of the order Spirochaetales. Syst. Appl. Microbiol. 16:224–226
    [Google Scholar]
  39. Rainey F. A., Stackebrandt E. 1993; Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus (Ben-Bassat and Zeikus 1981) comb, nov., description of Coprothermobacter gen nov., and reclassification of Thermobacteroides proteolytics as Coprothermobacterproteolyticus (Ollivier et al. 1985) comb. nov. Int. J. Syst. Bacteriol. 43:857–859
    [Google Scholar]
  40. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154:1222–1226
    [Google Scholar]
  41. Ringelberg D. B., Townsend G. T., DeWeerd K. A., Suflita J. M., White D. C. 1994; Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysaccharide branched-long-chain hydroxy fatty acids. FEMS Microbiol. Ecol. 14:9–18
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning, 2nd ed.. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  43. Swofford D. L. 1993 PAUP: phylogenetic analysis using parsimony, version 3.1.1 Illinois Natural History Survey; Champaign:
    [Google Scholar]
  44. Tasaki M., Kamagata Y., Nakamura K., Mikani E. 1991; Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch. Microbiol. 155:348–352
    [Google Scholar]
  45. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek J. Microbiol. Serol. 30:225–238
    [Google Scholar]
  46. Vainshtein M., Hippe H., Kroppenstedt R. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15:554–566
    [Google Scholar]
  47. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  48. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703
    [Google Scholar]
  49. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia (Berlin) 40:51–62
    [Google Scholar]
  50. Zwietering M. H., de Koos J. T., Hasenack B. E., Wit J. C. de, van’t Riet K. 1991; Modeling of bacterial growth as a function of temperature. Appl. Environ. Microbiol. 57:1094–1101
    [Google Scholar]
  51. Zwietering M. H., Jongenburger I., Rombouts F. M., Riet K. van’t. 1990; Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56:1875–1881
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-47-3-615
Loading
/content/journal/ijsem/10.1099/00207713-47-3-615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error