1887

Abstract

A strain of a thermophilic, anaerobic, dissimilatory, Fe(III)-reducing bacterium, gen. nov., sp. nov. (type strain JW/AS-Y7; DSM 11255), was isolated from hot springs in Yellowstone National Park and New Zealand. The gram-positive-staining cells occurred singly or in pairs as straight to slightly curved rods, 0.3 to 0.4 by 1.6 to 2.7 μm, with rounded ends and exhibited a tumbling motility. Spores were not observed. The temperature range for growth was 50 to 74°C with an optimum at 65°C. The pH range for growth at 65°C was from 5.5 to 7.6, with an optimum at 6.0 to 6.2. The organism coupled the oxidation of glycerol to reduction of amorphous Fe(III) oxide or Fe(III) citrate as an electron acceptor. In the presence as well as in the absence of Fe(III) and in the presence of CO, glycerol was metabolized by incomplete oxidation to acetate as the only organic metabolic product; no H was produced during growth. The organism utilized glycerol, lactate, 1,2-propanediol, glycerate, pyruvate, glucose, fructose, mannose, and yeast extract as substrates. In the presence of Fe(III) the bacterium utilized molecular hydrogen. The organism reduced 9,10-anthraquinone-2,6-disulfonic acid, fumarate (to succinate), and thiosulfate (to elemental sulfur) but did not reduce MnO, nitrate, sulfate, sulfite, or elemental sulfur. The G+C content of the DNA was 41 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolated strain as a member of a new genus within the gram-type-positive subphylum.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-541
1997-01-01
2022-06-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-541.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-541&mimeType=html&fmt=ahah

References

  1. Balashova V. V., Zavarzin G. A. 1980; Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48:635–639
    [Google Scholar]
  2. Boone D. R., Liu Y., Zhao Z.-J., Balkwill D. L., Drake G. R., Stevens T. O., Aldrich H. C. 1995; Bacillus infemus sp. nov., an Fe(III)- and Mn(IV)- reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol 45:441–448
    [Google Scholar]
  3. Brock T. D., Gustafson J. 1976; Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol 32:567–571
    [Google Scholar]
  4. Caccavo F. Jr., Blakemore R. P., Lovley D. R. 1992; A hydrogenoxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire. Appl. Environ. Microbiol 58:3211–3216
    [Google Scholar]
  5. Caccavo F. Jr., Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetateoxidizing dissimilatory metal reducing microorganism. Appl. Environ. Microbiol 60:3752–3759
    [Google Scholar]
  6. Caccavo F. Jr., Coates J. D., Rosselo-Mora R. A., Ludwig W., Schleifer K. H., Lovley D. R., McInerney M. J. 1996; Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol 165:370–376
    [Google Scholar]
  7. Coates J. D., Lonergan D. J., Philips E. J. P., Jenter H., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch. Microbiol 164:406–413
    [Google Scholar]
  8. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfide-reducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  9. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  10. Doetsch R. N. 1981 Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general microbiology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  11. Durand P., Reysenbach A. L., Prieur D., Pace N. 1993; Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch. Microbiol 159:39–44
    [Google Scholar]
  12. Eichler B., Schink B. 1984; Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol 140:147–152
    [Google Scholar]
  13. Gold T. 1992; The deep, hot biosphere. Proc. Natl. Acad. Sci. USA 89:6045–6049
    [Google Scholar]
  14. Gow P. A., Wall V. F., Oliven N. H. S., Valenta R. K. 1994; Proterozoic iron oxide (Cu-U-Au-REF) deposits: further evidence of hydrothermal origin. Geology 22:633–637
    [Google Scholar]
  15. Huber R., Rossnagel P., Woese C. R., Rachel R., Langworthy T. A., Stetter K. O. 1996; Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst. Appl. Microbiol 19:40–49
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  17. Ljungdahl L. G., Wiegel J. 1986 Working with anaerobic bacteria. 84–96 Demain A. L., Solomon N. A.ed Manual of industrial microbiology and biotechnology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  18. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J. P., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol 178:2402–2408
    [Google Scholar]
  19. Lovley D. R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev 55:259–287
    [Google Scholar]
  20. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J. P., Gorby Y. A., Goodwin S. 1993; Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol 159:336–344
    [Google Scholar]
  21. Lovley D. R. 1995; Microbial reduction of iron, manganese, and other metals. Adv. in Agron 54:175–231
    [Google Scholar]
  22. Lovley D. R., Phillips E. J. P., Lonergan D. J., Widman P. K. 1995; Fe(III) and S° reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol 61:2132–2138
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of desoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  25. Nealson K. H., Saffarini D. 1994; Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol 48:311–343
    [Google Scholar]
  26. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci 10:41–48
    [Google Scholar]
  27. Rosselo-Mora R. A., Caccavo F., Osterlehner K., Springer N., Spring S., Schuler D., Ludwig W., Amann R., Vanncanneyt M., Schleifer K. H. 1994; Isolation and taxonomic characterization of a halotolerant, facultatively iron-reducing bacterium. Syst. Appl. Microbiol 17:569–573
    [Google Scholar]
  28. Rosselo-Mora R. A., Ludwig W., Kampfer P., Amann R., Schleifer K. H. 1995; Ferrimonas balearica gen. nov., sp. nov., a new marine facultative Fe(III)-reducing bacterium. Syst. Appl. Microbiol 18:196–202
    [Google Scholar]
  29. Semple K., Westlake D. 1987; Characterization of iron-reducing Alteromonasputrefaciens strains from oil field fluids. Can. J. Microbiol 33:366–371
    [Google Scholar]
  30. Slobodkin A., Wiegel J. Fe(III) as an electron acceptor for H2 oxidation in thermophilic anaerobic enrichment cultures from geothermal areas. Extremophiles; in press:
    [Google Scholar]
  31. Slobodkin A. L., Eroshchev-Shak V. A., Kostrikina N. A., Lavrushin V. Y., Dainyak L. G., Zavarzin G. A. 1995; Magnetite formation by thermophilic anaerobic microorganisms. Dokl. Akad. Nauk 345:694–697 In Russian
    [Google Scholar]
  32. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res 26:31–43
    [Google Scholar]
  33. Svetlitshnyi V., Rainey F., Wiegel J. 1996; Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alcalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogen archaeum. Int. J. Syst. Bacteriol 46:1131–1137
    [Google Scholar]
  34. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev 41:100–180
    [Google Scholar]
  35. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., Van Etten J., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol 171:6455–6467
    [Google Scholar]
  36. Whitman W. B., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol 7:235–240
    [Google Scholar]
  37. Wiegel J. 1981; Distinction between the Gram reaction and the Gram type of bacteria. Int. J. Syst. Bacteriol 31:88
    [Google Scholar]
  38. Wiegel J., Quandt L. 1982; Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J. Gen. Microbiol 128:2261–2270
    [Google Scholar]
  39. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chern 238:2882–2886
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-541
Loading
/content/journal/ijsem/10.1099/00207713-47-2-541
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error