Phylogeny of and Other Mixotrophic Thiobacilli: Proposal for gen. nov. Free

Abstract

The complete 5S and 16S ribosomal DNA (rDNA) sequences of the facultatively chemolithotrophic bacterium and results of a comparison of these sequences with homologous sequences from several proteobacterial species supported affiliation of with the β subgroup of the , and form a phylogenetic cluster that comprises some of the thiobacilli capable of mixotrophic growth. This cluster is related to some pseudomonads and species belonging to the β subclass. In addition, a low-frequency restriction fragment analysis (LFRFA) of some mixotrophic thiobacilli and some related species was carried out by using pulsed-field gel electrophoresis (PFGE) to determine the I and I macrorestriction patterns and genome sizes of these organisms. The correlation of the LFRFA results and the 16S rDNA analysis results and the usefulness of the two analyses are discussed. The PFGE fingerprints suggested that sp. strain ATCC 27793 is related to rather than to , as described previously. The distinctive characteristics of the mixotrophic species analyzed in this work, their phylogenetic relatedness, and their physiological differences from other groups belonging to the , including other thiobacilli, suggest that these organisms should be transferred to a new genus, the genus gen. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-522
1997-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-522.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-522&mimeType=html&fmt=ahah

References

  1. Amils R., Matthews E. A., Cantor C. R. 1979; Reconstitution of 50S ribosomal subunits from Escherichia coli. Methods Enzymol 59:449–461
    [Google Scholar]
  2. Brune D. C. 1989; Sulfur oxidation by phototrophic bacteria. Biochim. Biophys. Acta 975:189–221
    [Google Scholar]
  3. Chu G., Vollrath D., Davies R. W. 1984; Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585
    [Google Scholar]
  4. Drobner E., Huber H., Stetter K. O. 1990; Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microbiol 56:2922–2923
    [Google Scholar]
  5. Ehrenreich A., Widdel F. 1994; Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol 60:4517–4526
    [Google Scholar]
  6. Friedrich C. G., Mitrenga G. 1981; Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett 10:209–212
    [Google Scholar]
  7. Genetics Computer Group 1991 Program manual for the GCG package, version 7. Genetics Computer Group; Madison, Wis:
    [Google Scholar]
  8. Goebel B. M., Stackebrandt E. 1994; Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol 60:1614–1621
    [Google Scholar]
  9. Gommers P. J. F., Kuenen J. G. 1988; Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium. Arch. Microbiol 150:117–125
    [Google Scholar]
  10. Grothues D., Tiimmler B. 1991; New approaches in genome analysis by pulsed field gel electrophoresis: application to the analysis of Pseudomonas species. Mol. Microbiol 5:2763–2776
    [Google Scholar]
  11. Gutell R. R., Larsen N., Woese C. R. 1994; Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev 58:10–26
    [Google Scholar]
  12. Harrison A. P. Jr. 1983; Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilium cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev. Int. J. Syst. Bacteriol 33:211–217
    [Google Scholar]
  13. Huber H., Stetter K. O. 1990; Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal-mobilizing bacterium. Appl. Environ. Microbiol 56:315–322
    [Google Scholar]
  14. Irazabal N., Moreira D., Amils R., Marin I. 1995 Comparative genomic organization of thiobacilli using pulsed field gel electrophoresis. 31–41 Jerez C. A., Vargas T., Toledo H., Wiertz J. V.ed Biohydrometallurgical processing University of Chile; Santiago, Chile:
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y:
    [Google Scholar]
  16. Kämpf C., Pfennig N. 1980; Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch. Microbiol 127:125–135
    [Google Scholar]
  17. Katayama Y., Hiraishi A., Kuraishi H. 1995; Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141:1469–1477
    [Google Scholar]
  18. Katayama-Fujimura Y., Tsuzaki N., Kuraishi H. 1982; Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. J. Gen. Microbiol 128:1599–1611
    [Google Scholar]
  19. Kelly P. D., Harrison A. P. 1989 Genus Thiobacillus,. 1842–1858 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 Williams & Wilkins; Baltimore, Md:
    [Google Scholar]
  20. Kondrat’eva T. F., Karavaiko G. I. 1992; Restriction analysis of Thiobacillus ferrooxidans DNA by electrophoresis in pulsating differently-directed electric fields. Mol. Genet. Mikrobiol. Virusol 3-4:9–12
    [Google Scholar]
  21. Lane D. J., Harrison A. P. Jr., Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. 1992; Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J. Bacteriol 174:269–278
    [Google Scholar]
  22. Lane D. J., Stahl D. A., Olsen G. J., Heller D. J., Pace N. R. 1985; Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J. Bacteriol 163:75–81
    [Google Scholar]
  23. London J. 1963; Thiobacillus intermedius nov. sp. A novel type of facultative autotroph. Arch. Mikrobiol 46:329–337
    [Google Scholar]
  24. London J., Rittenberg S. C. 1967; Thiobacillus perometabolis nov. sp., a nonautotrophic Thiobacillus. Arch. Mikrobiol 59:218–225
    [Google Scholar]
  25. McClelland M., Jones R., Patel J., Nelson M. 1987; Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res 15:5985–6005
    [Google Scholar]
  26. Mizoguchi T., Sato T., Okabe T. 1976; New sulphur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellus nov. sp. and Thiobacillus delicatus nov. sp. J. Ferment. Technol 54:181–191
    [Google Scholar]
  27. Moreira D., Amils R., Marin I. 1994; Complete primary structure of the 23S rRNA coding gene from Thiobacillus cuprinus and its similarity with that of Burkholderia cepacia. Syst. Appl. Microbiol 17:481–483
    [Google Scholar]
  28. Mulder E. G., Deinema M. H. 1981 The sheathed bacteria. 425–440 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes: a handbook on habitats, isolation and identification of bacteria Springer-Verlag; Heidelberg, Germany:
    [Google Scholar]
  29. Olsen G. J. 1988; Phylogenetic analysis using ribosomal RNA. Methods. Enzymol 164:793–812
    [Google Scholar]
  30. Palleroni N. 1984 Genus I. Pseudomonas Migula 1894, 237AL. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 Williams & Wilkins; Baltimore, Md.:
    [Google Scholar]
  31. Pittman M. 1984 Genus Bordetella Moreno-Lopez 1952, 178AL. 388–393 Krieg N. R., Holt J. G.ed Bergey’manual of systematic bacteriology 1 Williams & Wilkins; Baltimore, Md:
    [Google Scholar]
  32. Rodrigo A. G., Borges K. M., Bergquist P. L. 1994; Pulsed-field gel electrophoresis of genomic digests of Thermus strains and its implications for taxonomic and evolutionary studies. Int. J. Syst. Bacteriol 44:547–552
    [Google Scholar]
  33. Satiou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  34. Schooner F., Bousquet J., Tyagi R. 1996; Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int. J. Syst. Bacteriol 46:409–415
    [Google Scholar]
  35. Smith C. L., Klco S. R., Cantor C. R. 1988 Pulsed-field gel electrophoresis and the technology of large DNA molecules. 41–72 Davies K.ed Genome analysis: a practical approach IRL Press; Oxford, England:
    [Google Scholar]
  36. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. W. H. Freeman and Company; San Francisco, Calif:
    [Google Scholar]
  37. Stahelin T., Maglott D. 1971; Preparation of Escherichia coli ribosomal subunits active in polypeptide synthesis. Methods Enzymol 20:449–456
    [Google Scholar]
  38. Stibitz S., Garletts T. L. 1992; Derivation of a physical map of the chromosome of Bordetella pertussis Tohama I. J. Bacteriol 174:7770–7777
    [Google Scholar]
  39. Takakuwa S. 1992 Biochemical aspects of microbial oxidation of inorganic sulfur compounds. 1–43 Oae S., Okuyama T.ed Organic sulfur chemistry: biochemical aspects CRC Press; Boca Raton, Fla:
    [Google Scholar]
  40. Wilson A. C., Ochman H., Prager E. M. 1987; Molecular time scale for evolution. Trends Genet 3:241–247
    [Google Scholar]
  41. Woese C. R., Weisburg W. G., Paster B. J., Hahn C. M., Tanner R. S., Krieg N. R., Koops H. P., Harms H., Stackebrandt E. 1984; The phylogeny of purple bacteria: the beta subdivision. Syst. Appl. Microbiol 5:327–336
    [Google Scholar]
  42. Wood A. P., Kelly D. P. 1993; Reclassification of Thiobacillus thyasiris as Thiomicrospira thyasirae comb, nov., an organism exhibiting pleomorphism in response to environmental conditions. Arch. Microbiol 159:45–47
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-522
Loading
/content/journal/ijsem/10.1099/00207713-47-2-522
Loading

Data & Media loading...

Most cited Most Cited RSS feed