1887

Abstract

Several strains of a strictly anaerobic, vibrio-shaped or sigmoid, sulfate-reducing bacterium were isolated from deep marine sediments (depth, 80 and 500 m) obtained from the Japan Sea (Ocean Drilling Program Leg 128, site 798B). This bacterium was identified as a member of the genus on the basis of the presence of desulfoviridin and characteristic phospholipid fatty acids (iso 17:1ω7 and iso 15:0), the small number of growth substrates utilized (lactate, pyruvate, and hydrogen), and 16S rRNA gene sequence analysis data. Based on data for 16S rRNA sequences (1,369 bp), all of the Japan Sea strains were identical to each other and were most closely related to and less closely related to (levels of similarity, 91 and 89.6%, respectively). There were, however, considerable phenotypic differences (in temperatures, pressures, and salinities tolerated, growth substrates, and electron donors) between the Japan Sea isolates and the type strains of previously described desulfovibrios, as well as important differences among the Japan Sea isolates. The Japan Sea isolates were active (with sulfide production) over a wide temperature range (15 to 65°C) and a wide sodium chloride concentration range (0.2 to 10%) (moderate halophile), and they were barophiles that were active at pressures up to about 40 MPa (400 atm). The optimum pressures for activity corresponded to the calculated pressures at the depths from which the organisms were isolated (for isolates obtained at depths of 80 and 500 m the optimum activities occurred at 10 and 15 MPa, respectively [100 and 150 atm, respectively]). This confirms that the organisms came from deep sediments and indicates that they are well-adapted for deep sediment conditions, which is consistent with other characteristics (utilization of hydrogen, fermentation, and utilization of ferric iron and organic sulfonates as electron acceptors). We propose that Japan Sea isolate 500-1 is the type strain of a new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-515
1997-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-515.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-515&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989 Current protocols in molecular biology. Greene Publishing Associates; Wiley Interscience, New York, N.Y:
    [Google Scholar]
  2. Bernard F. P., Connan J., Magot M. 1992; Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques. 467–476Proceedings of the 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol 35:911–917
    [Google Scholar]
  4. Bolliger R., Hanselmann K. W., Bachofen R. 1991; Microbial potential in deep-sea sediments. Experientia 47:517–523
    [Google Scholar]
  5. Canfield D. E. 1991; Sulfate-reduction in deep sea sediments. Am. J. Sci 291:177–188
    [Google Scholar]
  6. Caumette P., Cohen Y., Matheron R. 1991; Isolation and characterisation of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst. AppL Microbiol 14:33–38
    [Google Scholar]
  7. Claypool G., Kaplan I. R. 1974 The origin and distribution of methane in marine sediments. 99–139 Kaplan I. R.ed Natural gases in marine sediments Plenum; New York, N.Y:
    [Google Scholar]
  8. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr 14:454–458
    [Google Scholar]
  9. Cord-Ruwisch R., Kleinitz W., Widdel F. 1987; Sulfate-reducing bacteria and their activities in oil production. J. Petrol. Technol 1:97–106
    [Google Scholar]
  10. Cragg B. A., Bale S. J., Parkes R. J. 1992; A novel method for the transport and long-term storage of cultures and samples in an anaerobic atmosphere. Lett. Appl. Microbiol 15:125–128
    [Google Scholar]
  11. Cragg B. A., Harvey S. M., Fry J. C., Herbert R. A., Parkes R. J. 1992; Bacterial biomass and activity in the deep sediment layers of the Japan Sea, hole 798B. Proc. Ocean Drilling Program, Scientific Results 127/128:761–776
    [Google Scholar]
  12. Cragg B. A., Parkes R. J., Fry J. C., Weightman A. J., Rochelle P. A., Maxwell J. R. 1996; Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet. Sci. Lett 139:497–507
    [Google Scholar]
  13. Cragg B. A., Parkes R. J., Fry J. C., Weightman A. J., Maxwell J. R., Kastner M., Hovland M., Whiticar M. J., Sample J. C., Stein R. 1995; Bacterial profiles in deep sediments of the Santa Barbara Basin Site 893. Proc. Ocean Drilling Program, Scientific Results 146:Part 2139–144
    [Google Scholar]
  14. Cragg B. A., Parkes R. J., Fry J. C., Weightman A. J., Rochelle P. A., Maxwell J. R., Kastner M., Hovland M., Whiticar M. J., Sample J. C. 1995; The impact of fluid and gas venting on bacterial populations and processes in Cascadia margin (holes 888-892) accretionary sediments and the geochemical consequences. Proc. Ocean Drilling Program, Scientific Results 146:399–411
    [Google Scholar]
  15. Devereux R., Stahl D. A. 1993 Phylogeny of sulfate-reducing bacteria and a perspective for analyzing their natural communities. 131–160 Odom J. M., Singleton R.ed The sulfate-reducing bacteria: contemporary perspectives Springer Verlag; New York, N.Y:
    [Google Scholar]
  16. Drobner E., Huber H., Wachtershauser G., Rose D., Stetter K. O. 1990; Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346:742–744
    [Google Scholar]
  17. Edlund A., Nichols P. D., Roffey R. W., White D. C. 1985; Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J. Lipid Res 26:982–988
    [Google Scholar]
  18. Felsenstein J. 1989; PHYLIP—phylogeny inference package (version 3.2) Cladistics. 5:164–166
    [Google Scholar]
  19. Froelich P. N., Klinkhammer G. P., Bender M. L., Luedtke N. A., Heath G. R., Cullen D., Dauphin P., Hammond D., Hartman B., Maynard V. 1979; Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43:1075–1090
    [Google Scholar]
  20. Guckert J. B., Antworth C. P., Nichols P. D., White D. C. 1985; Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Ecol 31:147–158
    [Google Scholar]
  21. Higgins D. G., Bleasby A. J., Fuch R. 1992; CLUSTAL V: improved software for multiple sequence alignment. Comput. Applic. Biosci 8:189–191
    [Google Scholar]
  22. Ingle J. C., Suyehiro K., von Breymann M. T. et al. 1990; Initial reports, leg 128. Proc. Ocean Drilling Program, Scientific Results College Station, Tex
    [Google Scholar]
  23. Jones R. E., Beeman R. E., Suflita J. M. 1989; Anaerobic metabolic processes in the deep terrestrial subsurface. Geomicrobiology 7:117–130
    [Google Scholar]
  24. Jorgensen B. B. 1982; Mineralization of organic matter in the seabed—the role of sulphate reduction. Nature 296:643–645
    [Google Scholar]
  25. Jorgensen B. B. 1983 Processes at the sediment-water interface. 477–509 Bolin B., Cook R. B.ed The major biogiochemical cycles and their interactions John Wiley; Chichester, United Kingdom:
    [Google Scholar]
  26. Krumbein W. E. 1983 Microbial geochemistry. Blackwell; Oxford, United Kingdom:
    [Google Scholar]
  27. Laemmli U. K. 1971; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  28. Lane D. J. 1991 16S/23S rRNA sequencing. 115–175 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley & Sons; Chichester, United Kingdom:
    [Google Scholar]
  29. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  30. Morita R. Y., Zobell C. E. 1955; Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Res 3:66–73
    [Google Scholar]
  31. Morrissey J. H. 1981; Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal. Biochem 117:307–310
    [Google Scholar]
  32. Neefs J.-M., Van de Peer Y., De Rijk P., Chapelle P., De Wachter R. 1993; Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21:3025–3049
    [Google Scholar]
  33. Parkes R. J., Cragg B. A., Bale S. J., Getliff J. M., Goodman K., Rochelle P. A., Fry J. C., Weightman A. J., Harvey S. M. 1994; Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413
    [Google Scholar]
  34. Parkes R. J., Cragg B. A., Bale S. J., Goodman K., Fry J. C. 1995; A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J. Microbiol. Methods 23:235–249
    [Google Scholar]
  35. Parkes R. J., Cragg B. A., Getliff J. M., Harvey S. M., Fry J. C., Lewis C. A., Rowland S. J. 1993; A quantitative study of microbial decomposition of biopolymers in recent sediments from the Peru Margin. Mar. Geol 113:55–66
    [Google Scholar]
  36. Pedersen K., Ekendahl S. 1990; Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb. Ecol 20:37–52
    [Google Scholar]
  37. Postgate J. R. 1984 Genus Desulfovibrio,. 666–672 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 Williams & Wilkins; Baltimore, Md:
    [Google Scholar]
  38. Postgate J. R. 1984 The sulphate-reducing bacteria. , 2nd. Cambridge University Press; Cambridge, United Kingdom:
    [Google Scholar]
  39. Rheinheimer G. 1985 Aquatic microbiology. John Wiley & Sons; Chichester, United Kingdom:
    [Google Scholar]
  40. Rochelle P. A., Fry J. C., Weightman A. J., Parkes R. J., Cragg B. A. 1994 Evaluation of genetic diversity of bacteria in marine sediments up to 3 million years old by direct and indirect 16S rRNA gene sequence analysis. 53–57 Lyell Meeting Volume. Special publication 94/1 NERC Earth Sciences Directorate; Swindon, United Kingdom:
    [Google Scholar]
  41. Rochelle P. A., Will J. A. K., Fry J. C., Jenkins G. J. S., Parkes R. J., Turley C. M., Weightman A. J. 1995 Extraction and amplification of 16S rRNA genes from deep marine sediments and seawater to assess bacterial community diversity. 219–239 van Elsas J. D., Trevors J. T.ed Nucleic acids in the environment: methods and applications Springer-Verlag; Berlin, Germany:
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual. , 2nd. Cold Spring Harbor Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  43. Skyring G. W., Jones H. E., Goodchild D. 1977; The taxonomy of some new isolates of dissimilatory sulfate-reducing bacteria. Can. J. Microbiol 23:1415–1425
    [Google Scholar]
  44. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745
    [Google Scholar]
  45. Stevens T. O., McKinley J. P. 1995; Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454
    [Google Scholar]
  46. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett 25:125–128
    [Google Scholar]
  47. Tardy-Jacquenod C., Magot M., Laigret F., Kaghad M., Patel B. K. C., Guezennec J., Metheron R., Caumette P. 1996; Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int. J. Syst. Bacteriol 46:710–715
    [Google Scholar]
  48. Taylor J., Parkes R. J. 1983; The cellular fatty acids of the sulphate-reducing bacteria Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol 129:3303–3309
    [Google Scholar]
  49. van de Peer Y., de Wachter R. 1994; TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci 10:569–570
    [Google Scholar]
  50. Wellsbury P., Herbert R. A., Parkes R. J. 1994; Bacterial [methyl-3H]thymidine incorporation in substrate-amended estuarine sediment slurries. FEMS Microbiol. Ecol 15:237–248
    [Google Scholar]
  51. Wellsbury P., Herbert R. A., Parkes R. J. 1996; Bacterial activity and production in near-surface estuarine and freshwater sediments. FEMS Microbiol. Ecol 19:203–214
    [Google Scholar]
  52. Widdel F., Bak F. 1991 Gram-negative mesophilic sulphate-reducing bacteria. 3352–3378 Balows A., Trtiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; New York, N.Y:
    [Google Scholar]
  53. Yayanos A. A., Dietz A. S., van Boxtel R. 1982; Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl. Environ. Microbiol 44:1356–1361
    [Google Scholar]
  54. Yruela I., Barbe A., Grimalt J. O. 1990; Determination of double bond position and geometry in linear and higly branched hydrocarbons and fatty acids from gas chromatography-mass spectrometry of epoxides and diols generated by stereospecific resin hydration. J. Chromatogr. Sci 28:421–427
    [Google Scholar]
  55. Ziomek E., Williams R. E. 1989; Modification of lignins by growing cells of the sulfate-reducing anaerobe Desulfovibrio desulfuricans. Appl. Environ. Microbiol 55:2262–2266
    [Google Scholar]
  56. Zobell C. E. 1938; Studies on the bacterial flora of marine bottom sediments. J. Sediment Petrol 8:10–18
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-515
Loading
/content/journal/ijsem/10.1099/00207713-47-2-515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error