1887

Abstract

The phylogenetic relationships among spp. were investigated by comparing 16S rRNA gene sequences. In this analysis we used 14 strains of , including seven feline isolates, two avian isolates, two human isolates, one bovine isolate, one ovine isolate, and one guinea pig isolate; five strains of , including three bovine isolates, one ovine isolate, and one koala isolate; and nine strains of , including six human isolates, two swine isolates, and one mouse isolate. A phylogenetic analysis of the 16S rRNA gene sequences of these organisms and seven previously published sequences revealed eight genetic groups which formed two clusters. The first cluster was composed of , and and included three genetic groups (one group containing avian, human, and ovine strains, one group containing feline strains. and one group containing guinea pig strains). The second cluster was composed of and also included three genetic groups (one group containing human strains, one group containing swine isolates, and one group containing rodent strains). The strains in each genetic group exhibited similar genetic distances. The results of the phylogenetic analysis agreed with the results of previous genomic DNA, gene allele, and biotyping studies. Therefore, the genetic groups based on genetic distances may be considered a criterion for species identification.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-425
1997-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-425.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-425&mimeType=html&fmt=ahah

References

  1. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  2. Felsenstein J. 1989; PHYLIP—phylogenetic inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  3. Frederick M. A., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989 Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience; New York, N.Y:
    [Google Scholar]
  4. Fukushi H., Hirai K. 1988; Immunochemical diversity of the major outer membrane protein of avian and mammalian Chlamydia psittaci. J. Clin. Microbiol 26:675–680
    [Google Scholar]
  5. Fukushi H., Hirai K. 1989; Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin. J. Bacteriol 171:2850–2855
    [Google Scholar]
  6. Fukushi H., Hirai K. 1992; Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int. J. Syst. Bacteriol 42:306–308
    [Google Scholar]
  7. Fukushi H., Hirai K. 1993; Chlamydia pecorum—the fourth species of genus Chlamydia. Microbiol. Immunol 37:515–522
    [Google Scholar]
  8. Fukushi H., Hirai K. 1993; Restriction fragment length polymorphisms of rRNA as genetic markers to differentiate Chlamydia spp. Int. J. Syst. Bacteriol 43:613–617
    [Google Scholar]
  9. Gaydos C. A., Quinn T. C., Eiden J. J. 1992; Identification of Chlamydia pneumoniae by DNA amplification of the 16S rRNA gene. J. Clin. Microbiol 30:796–800
    [Google Scholar]
  10. Gaydos C. A., Palmer L., Quinn T. C., Falkow S., Eiden J. J. 1993; Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences. Int. J. Syst. Bacteriol 43:610–612
    [Google Scholar]
  11. Girjes A A., Hugall A. F., Timms P., Lavin M. F. 1988; Two distinct forms of Chlamydia psittaci associated with disease and infertility in Phascolarctos cinereus (koala). Infect. Immun 56:1897–1900
    [Google Scholar]
  12. Girjes A. A., Hugall A., Graham D. M., McCaul T. F., Lavin M. F. 1993; Comparison of type I and type II Chlamydia psittaci strains infecting koalas (Phascolarctos cinereus). Vet. Microbiol 37:65–83
    [Google Scholar]
  13. Gordon F. B., Quan A. L. 1965; Occurrence of glycogen in inclusions of the psittacosis-lymphogranuloma venerum-trachoma agents. J. Infect. Dis 115:186–196
    [Google Scholar]
  14. Grayston J. T., Kuo C.-C., Campbell L. A., Wang S. 1989; Chlamydia pneumoniae sp. nov. for Chlamydia sp. strain TWAR. Int. J. Syst. Bacteriol 39:88–90
    [Google Scholar]
  15. Grice R. G., Brown A. S. 1984; A tissue culture procedure for the isolation of Chlamydia psittaci from koalas (Phascolarctos cinereus). Aust. J. Exp. Biol. Med. Sci 63:283–286
    [Google Scholar]
  16. Gutell R. R. 1994; Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res 22:3502–3507
    [Google Scholar]
  17. Higgins D. G., Sharp P. M. 1990; Fast and sensitive multiple sequence alignments on a microcomputer. Comput. Applic. Biosci 5:151–153
    [Google Scholar]
  18. Homer B. L., Jacobson E. R., Schumacher J., Scherba G. 1994; Chlamydiosis in mariculture-reared green sea turtles (Chelonia mydas). Vet. Pathol 31:1–7
    [Google Scholar]
  19. Hugall A., Timms P., Girjes A. A., Lavin M. F. 1989; Conserved DNA sequences in chlamydial plasmid. Plasmid 22:91–98
    [Google Scholar]
  20. Ina Y. 1994; ODEN: a program package for molecular evolutionary analysis and database search of DNA and amino acid sequences. Comput. Applic. Biosci 10:11–12
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York, N.Y:
    [Google Scholar]
  22. Kahane S., Metzer E., Friedman M. G. 1995; Evidence that the novel microorganism ‘Z’ may belong to a new genus in the family Chlamydiaceae. FEMS Microbiol. Lett 126:203–208
    [Google Scholar]
  23. Kaltenboeck B., Kousoulas K. G., Storz J. 1993; Structures of allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. J. Bacteriol 175:487–502
    [Google Scholar]
  24. Krieg N. R., Holt J. G.ed 1984 Bergey’s manual of systematic bacteriology. 1 The Williams & Wilkins Co.; Baltimore, Md:
    [Google Scholar]
  25. Moulder J. W., Hatch T. P., Kuo C.-C., Schachter J., Storz J. 1984 Genus I. Chlamydia Jones, Rake and Stearns 1945, 55AL. 729–739 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore, Md:
    [Google Scholar]
  26. Page L. A. 1968; Proposal of the recognition of two species in the genus Chlamydia Jones, Rake, and Stearns, 1945. Int. J. Syst. Bacteriol 18:51–66
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  29. Selander R. K., Caugant D. A., Ochman H. 1986; Methods for multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol 51:873–884
    [Google Scholar]
  30. Show N. 1974 Lipid composition as guide to the classification of bacteria. 63–108 Perlman D.ed Advances in applied microbiology Academic Press; London, United Kingdom:
    [Google Scholar]
  31. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman; San Francisco, Calif:
    [Google Scholar]
  32. Spears P., Storz J. 1979; Biotyping of Chlamydia psittaci based on inclusion morphology and response to diethylaminoethyl-dextran and cycloheximide. Infect. Immun 24:224–232
    [Google Scholar]
  33. Wang S. P., Grayston J. P. 1982; Microimmunofluorescence antibody responses in Chlamydia trachomatis infection, a review. 301–315The 5th International Symposium on Human Chlamydial Infections 2 Elsevier Biomedical Press; Amsterdam, The Netherlands:
    [Google Scholar]
  34. Weisburg W. G., Hatch T. P., Woese C. R. 1986; Eubacterial origin of chlamydiae. J. Bacteriol 167:570–574
    [Google Scholar]
  35. Wicke B. M., Newcomer C. E., Anver M. R., Nace G. W. 1983; Isolation of Chlamydia psittaci from naturally infected African clawed frogs (Xenopus laevis). Infect. Immun 41:789–794
    [Google Scholar]
  36. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-425
Loading
/content/journal/ijsem/10.1099/00207713-47-2-425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error